183872 (629950), страница 9

Файл №629950 183872 (Проведение исследовательской работы со статистическими данными) 9 страница183872 (629950) страница 92016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

7.3 РАСЧЕТ ЭКСЦЕССА РАСПРЕДЕЛЕНИЯ

Для симметричных распределений может быть рассчитан показатель эксцесса ( ):

(7.7)

где - центральный момент четвертого порядка; - средне квадратическое отклонение в четвертой степени.

Расчет для таблицы 3.2 Группировка населения по среднемесячной заработной плате, руб.

Рассчитаем показатель эксцесса по формуле (7.7)

Плосковершинное распределение.

Расчет для таблицы 3.4 Группировка магазинов по розничному товарообороту, млн. руб.

Рассчитаем показатель эксцесса по формуле (7.7)

Островершинное распределение.

Расчет для таблицы 3.6 Группировка транспортных организаций по грузообороту транспорта общего пользования (млн.т.км)

Рассчитаем показатель эксцесса по формуле (7.7)

Плосковершинное распределение.

7.4 ОЦЕНКА ОДНОРОДНОСТИ СОВОКУПНОСТИ

Оценка однородности для таблицы 3.2 Группировка населения по среднемесячной заработной плате, руб.

Необходимо отметить, что хотя показатели асимметрии и эксцесса характеризуют непосредственно лишь форму распределения признака в пределах изучаемой совокупности, однако их определение имеет не только описательное значение. Часто асимметрия и эксцесс дают определенные указания для дальнейшего исследования социально – экономических явлений. Полученный результат свидетельствует о наличии значительной по величине и отрицательной по своему характеру асимметрии, нужно заметить, что асимметрия является левосторонней. Кроме того совокупность имеет плос-ковершинное распределение.

Оценка однородности для таблицы 3.4 Группировка магазинов по розничному товарообороту, млн. руб.

Полученный результат свидетельствует о наличии значительной по величине и положительной по своему характеру асимметрии, нужно заметить что асимметрия является правосторонней. А так же совокупность имеет остро-вершинное распределение.

Оценка однородности для таблицы 3.6 Группировка транспортных организаций по грузообороту транспорта общего пользования (млн.т.км)

Полученный результат свидетельствует о наличии незначительной по величине и положительной по своему характеру асимметрии, нужно заметить что асимметрия является правосторонней. Кроме того совокупность имеет плосковершинное распределение.

8. РАСПРЕДЕЛЕНИЕ ВЫБОРОЧНОЙ СРЕДНЕЙ

8.1 ОПРЕДЕЛЕНИЕ ГРАНИЦ ГЕНЕРАЛЬНОЙ СРЕДНЕЙ СОБСТВЕННО- СЛУЧАЙНОЙ ВЫБОРКОЙ

Такой отбор заключается в отборе единиц из генеральной совокупности наугад или наудачу, без каких-либо элементов системности. Однако прежде чем производить собственно-случайный отбор, необходимо убедиться, что все без исключения единицы генеральной совокупности имеют абсолютно равные шансы попадания в выборку, в списках или перечне отсутствуют пропуски, игнорирования отдельных единиц и т. п. Следует также установить четкие границы генеральной совокупности таким образом, чтобы включение или не включение в нее отдельных единиц не вызывало сомнений.

Собственно-случайный отбор может быть как повторным так и бесповторным.

Расчет для таблицы 1.8 Число школ приходящихся на жителей

ПОВТОРНЫЙ ОТБОР:

Установим границы генеральной средней собственно случайной выборкой с помощью повторного и бесповторного отбора.

Повторный отбор, то есть когда попавшая в выборку единица после регистрации наблюдения признака возвращается в генеральную совокупность.

  1. Определяем среднюю выборочную по формуле:

(8.1)

  1. Рассчитаем дисперсию:

(8.2)

  1. Рассчитаем среднее квадратичное отклонение:

(8.3)

  1. Рассчитаем среднюю ошибку выборки:

(8.4)

(школ)

  1. Определяем предельную ошибку выборки с вероятностью 0,954:

(8.5)

  1. Установим границы генеральной средней:

С вероятностью 0,954 можно сделать заключение, что среднее число школ приходящихся на одного человека находиться в пределах от 18,28 до 19,72

БЕСПОВТОРНЫЙ ОТБОР:

Бесповторный отбор, то есть попавшая единица в выборку не возвращается в совокупность, из которой производится дальнейший отбор.

  1. Рассчитаем среднюю ошибку выборки:

(8.7)

где N-это объем генеральной совокупности; n-объем выборки из генеральной совокупности; - взвешенная дисперсия ( жилой площади, приходящейся на 1 человека)

  1. Определяем предельную ошибку выборки с вероятностью 0,954 по формуле (8.5):

  1. Установим границы генеральной средней по формуле (8.6):

С вероятностью 0,954 можно сделать заключение, что среднее число школ приходящихся на одного человека находиться в пределах от 18,3 до 19,7

8.2 ОПРЕДЕЛЕНИЕ ГРАНИЦ ГЕНЕРАЛЬНОЙ СРЕДНЕЙ ТИПИЧЕСКИМ ОТБОРОМ

Этот способ отбора используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько типических групп. При обследованиях населения такими группами могут быть, например, районы, социальные, возрастные или образовательные группы, при обследовании предприятий - отрасль и подотрасль, форма собственности и т. п. Типический отбор предполагает выборку единиц из каждой типической группы собственно-случайным или механическим способом. Поскольку в выборочную совокупность в той или иной пропорции обязательно попадают представители всех групп, типизация генеральной совокупности позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки, которая в этом случае определяется только внутригрупповой вариацией.

Отбор единиц в типическую выборку может быть организован либо пропорционально объему типических групп, либо пропорционально внутригрупповой дифференциации признака.

8.2.1. Пропорционально Объему выборки

С помощью типического отбора определим границы генеральной средней пропорционально объему выборки пропорционально дифференциации вариационного признака: Расчет для таблицы 1.9 Результаты обследования рабочих на предприятии

1.Рассчитаем среднюю из внутригрупповых дисперсий:

(8.7)

2. Определим среднюю ошибку выборки с вероятностью 0,954 по формуле (8.7):

3.Определяем предельную ошибку выборки с вероятностью 0,954 по формуле (8.5):

4. Найдем выборочное по формуле:

(8.8)

(дней)

5. Установим границы генеральной средней по формуле (8.6):

23,4-0,16 23,4+0,16

С вероятностью 0,954 можно сделать вывод о том, что среднее число дней временной не трудоспособности одного рабочего в целом по предприятиям находится в пределах: от 23,24 до 23,56.

8.2.2. Пропорционально дифференциации вариационного признака

Такой отбор дает лучшие результаты, однако на практике его применение затруднительно вследствие трудности получения сведений о вариации до проведения выборочного наблюдения.

1. Определим необходимый отбор выборки по каждому предприятию:

по первому предприятию: (человек)

по второму предприятию: (человек)

по третьему предприятию: (человек)

2. Определим среднюю ошибку выборки с вероятностью 0,954 :

3. Определяем предельную ошибку выборки с вероятностью 0,954 по формуле (8.5):

4. Установим границы генеральной средней по формуле (8.6):

С вероятностью 0,954 можно сделать вывод о том, что среднее число дней временной не трудоспособности одного рабочего в целом по предприятиям находится в пределах: от 21,42 до 25,38.

8.3 ОПРЕДЕЛЕНИЕ ГРАНИЦ ГЕНЕРАЛЬНОЙ СРЕДНЕЙ СЕРИЙНОЙ ВЫБОРКОЙ

Данный способ отбора удобен в тех случаях, когда единицы совокупности объединены в небольшие группы или серии. В качестве таких серий могут рассматриваться упаковки с определенным количеством готовой продукции, партии товара, студенческие группы, бригады и другие объединения. Сущность серийной выборки заключается в собственно-случайном либо механическом отборе серий, внутри которых производится сплошное обследование единиц.

Расчет для задачи №1

1. Рассчитаем выборочную среднюю по формуле (8.8)

2. Определим величину межгрупповой дисперсии по формуле:

(8.9)

3. С учетом установленной вероятности 0,954 (t=2) предельная ошибка выборки составляет:

(мм)

4. Произведенные расчеты позволяют сделать вывод, что среднее отклонение параметров всех изделий от нормы, находятся в следующих границах:

(мм)

Для определения необходимого объема серийной выборки при заданной предельной ошибки используются следующие формулы:

ПОВТОРНЫЙ ОТБОР:

(8.10)

(мм)

25,13 (мм) – необходимый объем серийной выборки

БЕСПОВТОРНЫЙ ОТБОР:

(8.11)

(мм)

Поскольку внутри групп обследуются все без исключения единицы, средняя ошибка серийной выборки зависит от величины только межгрупповой дисперсии. Для данной задачи межгрупповая дисперсия имеет значение 4,56. Среднее отклонение параметров всех изделий от нормы, во всей партии в целом находится в границах от 9,38мм до 13,02мм. Необходимый объем серийной выборки составил 17,54мм.

9. РАСЧЕТ ЭКОНОМИЧЕСКИХ ИНДЕКСОВ

Индекс - это относительный показатель, который выражает соотношение величин какого либо явления во времени, в пространстве или сравнение фактических данных с любым эталоном.

Индексы принято обозначать символами i и I. Знак внизу справа обозначает период: 0 - базисный; 1 - отчетный.

Индексируемые показатели:

q - количество (объем) какого-либо товара в натуральном выражении;

р - цена единицы товара;

z - себестоимость единицы продукции;

t - затраты времени на производство единицы продукции;

pq - себестоимость продукции или товарооборот;

zq - издержки производства.

По степени охвата явления индексы бывают индивидуальные и сводные.

Индивидуальные индексы получают в результате сравнения однотоварных явлений. Например, индекс цен на подсолнечное масло определяется как отношение цены на этот товар в текущем периоде к цене базисного периода.

Характеристики

Тип файла
Документ
Размер
11,83 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее