179281 (628152), страница 6
Текст из файла (страница 6)
h – величина интервала, она составляет 20 лет
fm – частота модального интервала, возьмем частого за 5 лет, она равна 20434 человек.
fm+1, fm-1 – частоты интервала, соответственно следующему (15064) и предшествующему (7230) модальному.
Значит, наибольшее число рождений за период с 2000 по 2004 год пришлось на женщин в возрасте примерно 21 год.
Медиана – вариант, который приходится на середину ряда.
Рассчитаем медиану по Таблице 3. Так как здесь используется интервальный вариационный ряд, то медиану следует вычислять по следующей формуле
, (27)
где Sm-1 – сумма накопленных частот, предшествующих медианной
- сумма частот
Таблица 11 - Вспомогательная таблица для расчета
Год | Возрастная группа, лет | ||||||
15-20 | 20-25 | 25-30 | 30-35 | 35-40 | 40-45 | 45-50 | |
Число родившихся за 2004-2008 г., чел. | 7230 | 20434 | 15064 | 8405 | 2648 | 404 | 14 |
Сумма накопленных частот | 7230 | 27573 | 42637 | 51042 | 53690 | 54094 | 54108 |
Значит, медианным интервалом является интервал 20-25 лет.
Это говорит о том, что одна половина рожденных за период 2004-2008 годы детей приходится на женщин, возраст которых 15-24,85 лет, другая – на женщин, возраст которых 24,85-49 лет.
Показатели вариации
Вариация – степень колеблимости признаков.
-
Размах вариации. Посчитаем размах рождаемости с 1999 по 2008 год в Амурской области на основе Таблицы 3.
R = Xmax – Xmin (28)
R = 11218-9312 =1906
Основной недостаток этого показателя заключается в том, что его величина определяется двумя крайними значениями признака, в данном случае рождаемостью в 1999 и 2008 году, и не отражает варьирование основной массы совокупности.
-
Среднее линейное отклонение – средняя из абсолютных значений отклонений отдельных вариант от их средней.
Посчитаем простое среднее линейное отклонение:
Построим вспомогательную таблицу на основе Таблицы 3
Таблица 12 - Вспомогательная таблица для расчета
Год | Число родившихся в Амурской области, чел. |
|
| |||
1999 | 9312 | -1142 | 1142 | 1304164 | ||
2000 | 9433 | -1021 | 1021 | 1042441 | ||
2001 | 9995 | -459 | 459 | 210681 | ||
2002 | 10468 | 14 | 14 | 196 | ||
2003 | 11097 | 643 | 643 | 413449 | ||
2004 | 11020 | 566 | 566 | 320356 | ||
2005 | 10659 | 205 | 205 | 42025 | ||
2006 | 10391 | -63 | 63 | 3969 | ||
2007 | 10956 | 502 | 502 | 252004 | ||
2008 | 11218 | 764 | 764 | 583696 | ||
Итого | 5379 | 4172981 |
(29)
-
Дисперсия и среднеквадратическое отклонение используются для характеристики колеблимости.
Проанализируем колеблимость рождаемости за 10 лет в Амурской области.
Найдем простую дисперсию:
(30)
и среднеквадратическое отклонение
(31)
при помощи вспомогательной таблицы 9.
Все вышеперечисленные показатели характеризуют абсолютный размер отклонений. Это не всегда удобно. Поэтому также принимается
-
Коэффициент вариации
(32)
Этот показатель характеризует надежность средних величин. Так как полученные коэффициенты вариации меньше 40%, то найденные средние показатели рождаемости являются надежными.
-
Корреляционно-регрессионный анализ рождаемости в Амурской области
В общественных процессах, таких как рождаемость, нет строгой связи между причиной и результатом. Нельзя выявить строгой зависимости рождаемости от каких-либо фактора, так как она зависит от множества причин и условий. Кроме того, неизвестно, в какой мере каждый из них влияет на величину рождаемости Задачи корреляционного анализа:
1)Определение формы и количественной характеристики связи;
2) Определение степени тесноты связи.
С целью установления характера между признаками постоим корреляционную таблицу, а также изобразим связь между изучаемыми признаками графически, определим форму связи между ними.
Таблица 13 - Связь между рождаемостью и среднедушевым доходом населения
Год | Число родившихся в Амурской области (у) | Среднедушевой доход жителей Амурской области в месяц, руб. (х) |
1999 | 9312 | 1387 |
2000 | 9433 | 1825 |
2001 | 9995 | 2313 |
2002 | 10468 | 2874 |
2003 | 11097 | 3852 |
2004 | 11020 | 4695 |
2005 | 10659 | 5874 |
2006 | 10391 | 7232 |
2007 | 10956 | 9388 |
2008 | 11218 | 11935 |
Для уточнения формы связи между рассматриваемыми признаками используем графический метод.
| ||||||||
| ||||||||
|
| |||||||
| ||||||||
| ||||||||
| ||||||||
| ||||||||
| ||||||||
|
|
|
|
|
| |||
|
|
| ||||||
|
|
|
| |||||
Рисунок 2 – Отражающий график зависимости между рождаемостью и среднедушевым доходом населения
Анализируя график, можно предположить, что по направлению связь является прямой. В основе этой зависимости лежит линейная связь, которая может быть выражена простым линейным уравнением регрессии
. (33)
Вычислим параметры данного уравнения регрессии.
Таблица 14 – Вспомогательная таблица для расчетов
год | х | у |
|
| ху |
| у- | (у- |
1999 | 1387 | 9312 | 1923769 | 86713344 | 12915744 | 9742,31 | -430,3 | 185166,7 |
2000 | 1825 | 9433 | 3330625 | 88981489 | 17215225 | 9825,53 | -392,5 | 154079,8 |
2001 | 2313 | 9995 | 5349969 | 99900025 | 23118435 | 9918,25 | 76,7 | 5890,5625 |
2002 | 2874 | 10468 | 8259876 | 109579024 | 30085032 | 10024,84 | 443,2 | 196390,79 |
2003 | 3852 | 11097 | 14837904 | 123143409 | 42745644 | 10210,66 | 886,3 | 785598,6 |
2004 | 4695 | 11020 | 22043025 | 121440400 | 51738900 | 10370,83 | 649,2 | 421421,69 |
2005 | 5874 | 10659 | 34503876 | 113614281 | 62610966 | 10594,84 | 64,2 | 4116,5056 |
2006 | 7232 | 10391 | 52301824 | 107972881 | 75147712 | 10852,86 | -461,9 | 213314,66 |
2007 | 9388 | 10956 | 88134544 | 120033936 | 102854928 | 11262,5 | -306,5 | 93942,25 |
2008 | 11935 | 11218 | 142444225 | 125843524 | 133886830 | 11746,43 | -528,4 | 279238,26 |
Итого | 51375 | 104549 | 373129637 | 1097222313 | 552319416 | 104549,1 | -0,15 | 2339159,8 |
(34)
Правильность расчета можно проверить уравнением суммы
.
Проверка адекватности регрессионной модели.
Для практического использования модели регрессии важна адекватность, т.е соответствие фактическим статистическим данным. При этом нужно выяснить насколько вычисленные параметры характерны для комплекса условий. Так как в данном случае n=5, т.е. n<30, то значимость коэффициентов простой линейной регрессии применительно к совокупности следует определять с помощью t – критерия Стьюдента. Вычислим расчетные значения t – критерия.
Для
; (35)
для
(36)
(37)
где n – объем выборки
- среднеквадратическое отклонение результативного признака от выровненных значений
- среднеквадратическое отклонение факторного признака от общей средней
.
(38)
Таблица 15 Вспомогательная таблица для расчетов
|
|
|
|
|
|
-1142,9 | 1306220 | -712,59 | 507784,5 | -430,3 | 185166,7 |
-1021,9 | 1044280 | -629,37 | 396106,6 | -392,5 | 154079,8 |
-459,9 | 211508 | -536,65 | 287993,2 | 76,7 | 5890,5625 |
13,1 | 171,61 | -430,06 | 184951,6 | 443,2 | 196390,79 |
642,1 | 412292,4 | -244,24 | 59653,18 | 886,3 | 785598,6 |
565,1 | 319338 | -84,07 | 7067,765 | 649,2 | 421421,69 |
204,1 | 41656,81 | 139,94 | 19583,2 | 64,2 | 4116,5056 |
-63,9 | 4083,21 | 397,96 | 158372,2 | -461,9 | 213314,66 |
501,1 | 251101,2 | 807,6 | 652217,8 | -306,5 | 93942,25 |
763,1 | 582321,6 | 1291,53 | 1668050 | -528,4 | 279238,26 |
Итого | 4172973 | 0,05 | 3941780 | -0,15 | 2339159,8 |
(39)
3,1825
Так как t – расчетное больше t – табличное, то оба параметра и
признаются значимыми
Определим тесноту корреляционной связи между переменными х и у.
(40)
Полученное значение теоретического корреляционного отношения свидетельствует о наличии прямой зависимости между рассматриваемыми признаками. для определения тесноты связи используется и другой показатель – линейный коэффициент корреляции (r).
(41)
Так как 0,94 приближается к 1, то степень тесноты связи полностью соответствует теоретическому корреляционному отношению, который является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции.
Оценим значимость коэффициента корреляции r с помощью t – критерия Стьюдента.
(42)
Т.о. коэффициент корреляции является значимым.
Значит, построенная регрессионная модель в целом адекватна и, следовательно, можно сделать заключение, что построенная регрессионная модель может быть использована для анализа и прогноза.
Расчет ошибки аппроксимации по формуле
(43)
Таблица 16 – Вспомогательная таблица для расчетов
годы | у | у' | | у - у' | | (| у - у' |) / у | (| у - у' |)*100 / у |
1999 | 9312 | 9742,31 | 430,31 | 0,046210266 | 4,621026632 |
2000 | 9433 | 9825,53 | 392,53 | 0,041612424 | 4,161242447 |
2001 | 9995 | 9918,25 | 76,75 | 0,007678839 | 0,767883942 |
2002 | 10468 | 10024,8 | 443,16 | 0,042334734 | 4,233473443 |
2003 | 11097 | 10210,7 | 886,34 | 0,079872037 | 7,987203749 |
2004 | 11020 | 10370,8 | 649,17 | 0,058908348 | 5,890834846 |
2005 | 10659 | 10594,8 | 64,16 | 0,006019326 | 0,601932639 |
2006 | 10391 | 10852,9 | 461,86 | 0,04444808 | 4,444808007 |
2007 | 10956 | 11262,5 | 306,5 | 0,027975539 | 2,797553852 |
2008 | 11218 | 11746,4 | 528,43 | 0,047105545 | 4,710554466 |
ИТОГО | 40,21651402 |
По результатам расчетов ошибка аппроксимации = 40,2165/10=4
Такое значение ошибки аппроксимации не превышает 12-15%, это свидетельствует о том, что данные адекватны реальным.
Экономическая интерпретация параметров регрессии.
Для этого используется коэффициент эластичности.
Это говорит о том, что при увеличении среднедушевого дохода населения в месяц в Амурской области на 1% рождаемость должна увеличиться в среднем на 0,09 %.
ЗАКЛЮЧЕНИЕ
В данной курсовой работе было проведено статистическое исследование такого социального исследования, как рождаемость в Амурской области.
Исследование включало два этапа. На первом этапе была раскрыта общая теоретическая характеристика объекта исследования, выявлена особенность и раскрыта важность изучения этого социального явления. Второй этап – аналитическое исследование рождаемости, которое было проведено на основе статистических показателей.
В данной работе были использованы данные, предоставленные Амурстатом, а также условные данные, отражающие общую тенденцию изменения рассматриваемого явления. Изначально все данные были систематизированы при помощи сводки и группировки. Рожденные были сгруппированы по полу, а также по возрасту матери.
Были просчитаны средние показатели, устанавливающие средние величины рождаемости в Амурской области. При помощи структурных сведений был установлен наиболее частый возраст, в котором женщина становится матерью, а также возраст, приходящийся на середину всех рождений. Была установлена степень колеблимости рождаемости на основе показателей вариации. Рассчитанные ряды динамики показали абсолютный прирост, темпы роста и темпы прироста изучаемого явления.
В работе также был проведен корреляционный анализ. Результатом которого явилось установление прямой достаточно тесной связи между уровнем рождаемости и среднедушевым доходом населения. Полученная регрессионная модель оказалась адекватной, т.е. её можно использовать для анализа и прогноза рождаемости в Амурской области.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Амурский статистический ежегодник: Сборник / Амуроблкомстат. – Б., 1999. – 391 с.
2. Амурский статистический ежегодник: Сборник / Амуроблкомстат. – Б., 2000. – 401 с.
3. Амурский статистический ежегодник: Сборник / Амуроблкомстат. – Б., 2001. – 387 с.
4. Амурский статистический ежегодник: Сборник / Амуроблкомстат. – Б., 2002. – 403 с.
5. Амурский статистический ежегодник: Сборник / Амуроблкомстат. – Б., 2003. – 407 с.
6. Амурский статистический ежегодник: Сборник / Амуроблкомстат. – Б., 2004. – 382 с.
7. Амурский статистический ежегодник: Сборник / Амурстат. – Б., 2005. – 392 с.
8. Амурский статистический ежегодник: Сборник / Амурстат. – Б., 2006. – 400 с.
9. Амурский статистический ежегодник: Сборник / Амурстат. – Б., 2007. – 408 с.
10. Амурский статистический ежегодник: Сборник / Амурстат. – Б., 2008. – 407с.
11. Анализ динамики рождаемости населения Амурской области: Зап. / Амурстат. – Б., 2009. – 16 с.
12. Демографическая ситуация Амурской области: Стат.Сб. / Амурстат. – Б., 200. – 132 с.
13. Борисов В.А. Демография / В.А. Борисов. – М.: NOTABENE, 2001. – 272 с.
14. Гусаров В.М. Теория статистики / В.М. Гусаров.– М.: ЮНИТИ, 2000. – 432 с.
15. Медведков В.М. Демография / В.М. Медведков. – М.: Изд-во Московск. гос.ун-та, 2003. – 279 с.
16. Елисеева И.И. Социальная статистика: Учеб.пособие / И.И. Елисеева. - М.: Финансы и статистика, 2001. – 336 с.
17. Назаров М.П. Социально-экономическая статистика: Учеб.пособие / М.П. Назаров. - М.: Финансы и статистика, 2001. – 504 с.
18. Румянцев В.Н. Общая теория статистики: Учеб.пособие / В.Н. Румянцев, Е.В. Петрова.– М.: Инфра, 2001. – 342 с.
19. Харченко Л.П. Статистика: Учеб.пособие / Л.П. Харченко, В.Г. Долженкова. – М.: Инфра, 2001. – 286 с.
20. Шмойлова Р.А. Теория статистики: Учеб.пособие / Р.А. Шмойлова. - М.: Финансы и статистика, 2000. – 373 с.
30>