166648 (625072), страница 6
Текст из файла (страница 6)
Рассчитаем тепловые нагрузки (в кВт):
Iвп1 = Iг2 = 2717 кДж/кг, Iвп2 = Iг3 = 2695 кДж/кг, Iвп3 = Iбк = 2623,4 кДж/кг.
Расчёт коэффициентов теплопередачи выполним описанным выше методом.
Рассчитаем α1 методом последовательных приближений. Физические свойства конденсата Na2SO4 при средней температуре плёнки сведены в таблице 14.
Таблица 14 Физические свойства конденсата при средней температуре плёнки
Параметр | Корпус | ||
1 | 2 | 3 | |
Теплота конденсации греющего пара r, кДж/кг | 2137,5 | 2173 | 2224,4 |
Плотность конденсата при средней температуре плёнки ρж, кг/м3 | 924 | 935 | 950 |
Теплопроводность конденсата при средней температуре плёнки λж, Вт/(м∙К) | 0,685 | 0,686 | 0,685 |
Вязкость конденсата при средней температуре плёнки μж, Па∙с | 0,193 ∙ 10-3 | 0,212 ∙ 10-3 | 0,253 ∙ 10-3 |
Примем в первом приближении Δt1 = 2,0 град.
Вт/(м2∙К)
град
град
Для расчета коэффициента теплопередачи α2 физические свойства кипящих растворов Na2SO4 и их паров приведены в таблице 15.
Таблица 15 Физические свойства кипящих растворов Na2SO4 и их паров
Параметр | Корпус | ||
1 | 2 | 3 | |
Теплопроводность раствора λ, Вт/(м∙К) | 0,344 | 0,352 | 0,378 |
Плотность раствора ρ, кг/м3 | 1071 | 1117 | 1328 |
Теплоёмкость раствора с, Дж/(кг∙К) | 3876 | 3750 | 3205 |
Вязкость раствора μ, Па∙с | 0,26 | 0,3 | 0,6 |
Поверхностное натяжение σ, Н/м | 0,0766 | 0,0778 | 0,0823 |
Теплота парообразования rв, Дж/кг | 2198∙ 103 | 2234∙ 103 | 2305∙ 103 |
Плотность пара ρп, кг/м3 | 1,243 | 0,8254 | 0,2996 |
Вт/(м2∙К)
Проверим правильность первого приближения по равенству удельных тепловых нагрузок:
Вт/м2
Вт/м2
Как видим, q’ ≠ q”. Для второго приближения примем Δt1 = 2,3 град, пренебрегая изменением физических свойств конденсата при изменении температуры, рассчитываем α1 по соотношению:
Вт/(м2∙К)
Тогда получим:
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим, q’ ≈ q”. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К1:
Вт/(м2∙К)
Далее рассчитываем коэффициент теплопередачи для второго корпуса К2. Примем в первом приближении Δt1 = 2,0 град. Для определения К2 найдём:
Вт/(м2∙К)
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим, q’ ≠ q”. Для второго приближения примем Δt1 = 2,2 град.
Вт/(м2∙К)
Тогда получим:
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим, q’ ≈ q”. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К2:
Вт/(м2∙К)
Рассчитаем теперь коэффициент теплопередачи для третьего корпуса К3. Примем в первом приближении Δt1 = 2,0 град.
Вт/(м2∙К)
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим, q’ ≠ q”. Для второго приближения примем Δt1 = 2,5 град.
Вт/(м2∙К)
Тогда получим:
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим, q’ ≈ q”. Так как расхождение между тепловыми нагрузками не превышает 3%, на этом расчёт коэффициентов α1 и α2 заканчиваем и находим К3:
Вт/(м2∙К)
Распределение полезной разности температур:
град
град
Проверка суммарной полезной разности температур:
град
Сравнение полезных разностей температур, полученных в четвертом и третьем приближениях, представлено в таблице 16:
Таблица 16 Сравнение полезных разностей температур
Параметр | Корпус | |||
1 | 2 | 3 | ||
Распределённые в четвертом приближении значения Δtп, °С | 17,56 | 18,1 | 20,2 | |
Распределённые в третьем приближении значения Δtп, °С | 18,24 | 17,92 | 19,68 |
Различия между полезными разностями температур по корпусам в первом и втором приближениях не превышают 5 %. Определяем поверхность теплопередачи выпарных аппаратов [1]:
м2
м2
м2
По ГОСТ 11987 – 81 выбираем выпарной аппарат со следующими характеристиками:
2. Определение толщины тепловой изоляции
Толщину тепловой изоляции δи находят из равенства удельных тепловых потоков через слой изоляции от поверхности изоляции в окружающую среду:
(22)
где αв – коэффициент теплоотдачи от внешней поверхности изоляционного материала в окружающую среду, Вт/(м2∙К) [6]:
tст2 – температура изоляции со стороны окружающей среды (воздуха); для аппаратов, работающих в закрытом помещении, выбирается в интервале 35 – 45 °С; tст1 – температура изоляции со стороны аппарата; ввиду незначительного термического сопротивления стенки аппарата по сравнению с термическим сопротивлением слоя изоляции tст1 принимают равной температуре греющего пара tг1;
tв – температура окружающей среды (воздуха), °С;
λи – коэффициент теплопроводности изоляционного материала, Вт/(м∙К). Выберем в качестве материала для тепловой изоляции совелит (85 % магнезии + 15 % асбеста), имеющий коэффициент теплопроводности λи = 0,09 Вт/(м∙К).
Вт/(м2∙К)
Рассчитаем толщину тепловой изоляции для первого корпуса:
м
Принимаем толщину тепловой изоляции 0,04 м и для других корпусов.
3. Расчёт барометрического конденсатора
Для создания вакуума в выпарных установках обычно применяют конденсаторы смешения с барометрической трубой. В качестве охлаждающего агента используют воду, которая подаётся в конденсатор чаще всего при температуре окружающей среды (около 20 °С). Смесь охлаждающей воды и конденсата выливается из конденсатора по барометрической трубе. Для поддержания постоянства вакуума в системе из конденсатора с помощью вакуум-насоса скачивают неконденсирующиеся газы.
Необходимо рассчитать расход охлаждающей воды, основные размеры (диаметр и высоту) барометрического конденсатора и барометрической трубы, производительность вакуум насоса.
3.1 Определение расхода охлаждающей воды
Расход охлаждающей воды Gв определяют из теплового баланса конденсатора:
(23)
где Iбк – энтальпия паров в барометрическом конденсаторе, Дж/кг; tн – начальная температура охлаждающей воды, °С; tк – конечная температура смеси воды и конденсата, °С.
Разность температур между паром и жидкостью на выходе из конденсатора должна быть 3 – 5 град. Поэтому конечную температуру воды tк на выходе из конденсатора принимают на 3 – 5 град ниже температуры конденсации паров:
°С
Тогда
кг/с
3.2 Расчёт диаметра барометрического конденсатора
Диаметр барометрического конденсатора dбк определяют из уравнения расхода:
(24)
где ρ – плотность паров, кг/м3; v – скорость паров, м/с.
При остаточном давлении в конденсаторе порядка 104 Па скорость паров v принимают 15 – 25 м/с:
м
По нормалям НИИХИММАШа подбираем конденсатор диаметром, равным расчётному или ближайшему большему. Определяем его основные размеры. Выбираем барометрический конденсатор диаметром dбк = 600 мм.
3.3 Расчёт высоты барометрической трубы
В соответствии с нормалями ОСТ 26716 – 73, внутренний диаметр барометрической трубы dбт равен 150 мм.
Скорость воды в барометрической трубе vв равна:
м/с
Высоту барометрической трубы определяют по уравнению:
(25)
где В – вакуум в барометрическом конденсаторе, Па; Σξ – сумма коэффициентов местных сопротивлений; λ – коэффициент трения в барометрической трубе; Нбт, dбт – высота и диаметр барометрической трубы, м; 0,5 – запас высоты на возможное изменение барометрического давления, м.
В = Ратм – Рбк = 9,8 ∙ 104 – 3 ∙ 104 = 6,8 ∙ 104 Па
Σξ = ξвх + ξвых = 0,5 + 1,0 = 1,5
где ξвх и ξвых – коэффициенты местных сопротивлений на входе в трубу и на выходе из неё.
Коэффициент трения λ зависит от режима течения жидкости. Определим режим течения воды в барометрической трубе:
Для гладких труб при Re = 855000 коэффициент трения λ равен:
Отсюда находим Нбт = 7,68 м. [1]
В таблице 17 представлены основные размеры барометрического конденсатора.
Таблица 17 Основные размеры барометрического конденсатора
Параметр | Значение, мм |
Диаметр барометрического конденсатора, dБК | 600 |
Толщина стенки аппарата, S | 5 |
Расстояние от верхней полки до крышки аппарата, а | 1300 |
Расстояние от нижней полки до днища аппарата, r | 1200 |
Ширина полки, b | - |
Расстояние между осями конденсатора и ловушки: К1 К2 | 675 - |
Высота установки Н | 4550 |
Ширина установки Т | 1400 |
Диаметр ловушки D | 400 |
Высота ловушки h | 1440 |
Диаметр ловушки D1 | - |
Высота ловушки h1 | - |
Расстояние между полками: а1 а2 а3 а4 а5 | 260 300 360 400 430 |
Основные проходы штуцеров: для входа пара (А) для входа воды (Б) для выхода парогазовой смеси (В) для барометрической трубы (Г) воздушник (С) для входа парогазовой смеси (И) для выхода парогазовой смеси (Ж) для барометрической трубы (Е) | 350 125 100 150 - 100 70 50 |
4. Расчёт производительности вакуум-насоса