151232 (621636), страница 4
Текст из файла (страница 4)
с
Рис 1.1
редней точки между двумя уровнями энергии, причем энергия кванта падающего света должна быть точно равна половине разности энергии этих уровней(рис .1.1).Двухквантовые переходы представляют собой общее явление в абсорбционной спектроскопии различного типа [46- 51]. Для обнаружения двухквантового перехода необходимо, чтобы измерение производилось возможно скорее после облучения. В противном случае слабый двухквантовый сигнал может быть закрыт сигналом свободных радикалов, возникших при разложении растворителя.
Для состояния органических соединений двухквантовые переходы проявляются наиболее легко при магнитных полях, удовлетворяющих условию[52]:
(1.1)
Образование молекулы в электронно-возбужденном состоянии, синглетном или триплетном требует поглощения одного кванта света молекулой в основном состоянии. Поэтому первичный фотохимический акт обычно происходит в результате поглощения одного кванта света (закон Штарка — Эйнштейна). Скорость образования первичного продукта фотохимической реакции очевидно должна быть пропорциональна интенсивности света. Принсгейм [25], по-видимому, был первый, кто в 1923 г. предположил, что возможны фотохимические реакции, происходящие после поглощения кванта света молекулой в электронно-возбужденном состоянии. В этом случае первичный химический акт происходит в результате последовательного поглощения двух квантов света. Такие реакции мы в дальнейшем будем называть двухквантовыми.
где А — исходная молекула; А* — электронно-возбужденное состояние этой молекулы; В — продукт реакции; и
— кванты света с одинаковой или разной энергией. Волнистой стрелкой показан темповой процесс (люминесценция или (и) безызлучательный переход в исходное состояние), который определяет собственное время жизни молекулы в состоянии А*. Из схемы сразу видно, что увеличение интенсивности света и собственного времени жизни состояния А* будут благоприятствовать реализации двухквантовых реакций.
Из схемы двухквантовой реакции следует выражение для
скорости реакции
, (2.1)
где — интенсивность света;
— коэффициент пропорциональности. Было показано, что в неполярных жидкостях различия в энергиях одноквантовой фотоионизации ТМФД определяются различные химические реакции, в частности, с соседними молекулами растворителя. Эти реакции успешно конкурируют с быстрыми процессами внутренней конверсии.
Первичный двухквантовый фотохимический процесс часто сопровождается различными вторичными одноквантовыми фотохимическими процессами. Хотя в жесткой среде, особенно при низких температурах, можно зафиксировать такие частицы, как радикалы, ион-радикалы и электроны, часто трудно установить, образовались ли они в первичном двухквантовом процессе или во вторичных процессах[53].
Молекулы в высших возбужденных состояниях обычно могут вступать с разной вероятностью в различные первичные реакции. Естественно, что изменение среды сильно влияет на направление первичной реакции. Как недавно было установлено, увеличение энергии второго кванта приводит не только к резкому увеличению эффективности двухквантовой реакции, но и к изменению преимущественного направления химической реакции. Учитывая все эти соображения, целесообразно обсуждать двухквантовые реакции не по типам химических реакций а по классам ароматических соединений[53].
Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:
Фотодиссоциация, например:
(3.1)
Фотоокисление, например
(4.1)
Фотоионизация, например
(5.1)
Льюис и Каша [54] предложили два механизма этих реакций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии
(6.1)
либо в результате поглощения фотона триплетной молекулой
. (7.1)
В жесткой среде при низкой температуре можно накопить значительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [67] последовательно поглощаются два отдельных фотона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.
Механизм реакции двухфотонной сенсибилизированной реакции разрыва связи молекулы ЛВ растворителя может быть записан следующим образом[55]:
или
,
,
,
где X и Y—молекулы растворенного вещества. Различные экспериментальные данные (например, зависимость скорости образования радикалов от концентрации растворенного вещества или интенсивности возбуждающего света) находятся в хорошем согласии с выводом, вытекающим из приведенной кинетический схемы.
Установлено, что длины волн, эффективные для вторичного возбуждения (т.е. ) и приводящие к разложению растворителя, совпадают с длинами волн полос триплет-триплетного поглощения растворенного вещества (X или Y). Например, в случае сенсибилизатора — нафталина — полоса поглощения
при 2600К оказывается эффективной в отношении разложения этанола и диэтилового эфира с образованием этильного радикала [56-59]. С другой стороны, переход
при 4000 Ǻ эффективен относительно разрыва связи в метилиодиие или трет-бутаноле и образования метильного радикала [60]. Иными словами, эффективность второго кванта hv2, по-видимому, определяется энергией, требуемой для разрыва данной связи в молекуле растворителя, и спектром триплет-триплетного поглощения растворенного вещества. Теренин и сотр. [60] применили эту селективность, исследуя зависимость скорости образования радикалов от концентрации субстрата в системе нафталин (сенсибилизатор) + метилиодид (субстрат) в стеклообразном этанольном растворе.. Это исследование, вероятно, также подтверждает постулированный выше процесс триплет-триплетного переноса энергии.
Появление сигналов ЭПР радикала обычно связано с небольшим уменьшением интенсивности сигнала ЭПР состояния и сильным увеличением интенсивности фосфоресценции
[61]. Эти явления и выводы, вытекающие из них, можно суммировать следующим образом[55]:
-
В процессе фотолиза не происходит разрушения молекул
сенсибилизатора. Интенсивности сигнала ЭПР состоянияи
интенсивности испусканияболее или менее полно восстанавливаются после расплавления стекла и повторного его
замораживания. -
Спектр ЭПР состояния
позволяет заключить, что время
жизни состоянияпри протекании процесса фотолиза не меняется. Однако увеличенная интенсивность испускания
характеризуется резким сокращением времени жизни. Для случая, когда в качестве сенсибилизатора использовался нафталин, наблюдалось уменьшение
до значения, меньшего чем 10 мс, увеличение
в 30 раз и уменьшение интенсивности сигнала ЭПР триплетных молекул до 70% [61].
3. Очень вероятно, что образуется некий комплекс триплетной молекулы и радикала. Константа скорости излучательного перехода для «состояния » такого комплекса значительно увеличивается по сравнению с таковой для молекулы, возможно, по тому же механизму, который имеет место в комплексах ароматических молекул с О2 или N0. Поэтому происходит увеличение
и уменьшение
. С другой стороны,
столь мало, что концентрация «состояний
» комплекса быстро падает. Таким образом, вклад комплекса в сигнал ЭПР незначителен. Однако образование комплекса приводит к уменьшению концентрации триплетных молекул, не участвующих в образовании комплекса. Поскольку спектр ЭПР обусловлен поглощением триплетных молекул, не связанных в комплекс, из этого следует, что
должна уменьшаться, тогда как
сильно уменьшаться не должно. Нагревание до плавления образца приводит к исчезновению радикалов и более или менее полному восстановлению первоначальной фотоактивности.
§3. Двухквантовые фотопроцессы с участием триплетных молекул.
Как было отмечено выше Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:
Фотодиссоциация, например:
Фотоокисление, например
(8.1)
Фотоионизация, например
(9.1)
Льюис и Каша [55] предложили два механизма этих реакций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии
(10.1)
либо в результате поглощения фотона триплетной молекулой
. (11.1)
В жесткой среде при низкой температуре можно накопить значительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [62] последовательно поглощаются два отдельных фотона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.
Одними из первых исследователей рекомбинационного испускания были Дебай и Эдвардс [63]. Они облучали при 77 К твердые растворы легко окисляющихся веществ (фенол, толуидин) и зарегистрировали испускание с чрезвычайно высоким временем жизни (более 100 с). Его затухание было неэкспоненциальным, и авторы предположили, что имеет место последовательность ряда стадий: фотоионизация [по терминологии Льюиса и Липкина — фотоокисление, см. уравнение (8.1)], диффузия захваченных матрицей электронов к ионизованным молекулам и их рекомбинация, в результате которой получается возбужденное состояние:
(12.1)
, (13.1)
(14.1)
Линшиц, Берри и Швейцер [52] исследовали спектры поглощения при низкой температуре стеклообразных растворов лития в аминах. Они обнаружили интенсивный пик при 600 нм, а также более слабое поглощение, простирающееся в инфракрасную область. При освещении полоса 600 нм ослаблялась, а длинноволновый фон усиливался. Поглощение в области 600 нм авторы приписали сильно сольватированным электронам, а длинноволновое поглощение — слабо сольватированным электронам. Затем они облучили стеклообразные растворы легко окисляемых органических соединений и идентифицировали в спектрах поглощения как полосы сольватированных электронов, так и полосы радикалов или ион-радикалов. Рекомбинация при температуре жидкого азота была очень медленной, но при нагревании облученного раствора происходило испускание люминесценции и ослабление полос поглощения и радикалов и сольватированных электронов. Эти результаты доказали, что люминесценция действительно обусловлена рекомбинацией ионов и электронов [52] ((12.1) и (13.1)). Спектр люминесценции оказался идентичным спектру фосфоресценции (т. е. испускание было рекомбинационной фосфоресценцией), переходов типа обнаружено не было, но причиной этого нельзя считать большую скорость интеркомбинационной конверсии, поскольку при фотовозбуждении возникала интенсивная быстрая флуоресценция. Подобные же результаты получили Альбрехт и сотр. [64], которые облучали инфракрасным светом фотоионизированный твердый раствор тетраметил-n-фенилендиамина и зарегистрировали при этом как рекомбинационную фосфоресценцию, так и рекомбинационную замедленную флуоресценцию. Отношение интенсивностей этих видов испускания оказалось значительно больше отношения интенсивностей обычной фосфоресценции и быстрой флуоресценции того же самого образца, что указывало на прямое заселение триплетного состояния в рекомбинационном процессе, а именно
(15.1)
Альтернативный процесс, т. е. заселение электронно-возбужденного синглетного состояния