151232 (621636), страница 6

Файл №621636 151232 (Элементы спектрального анализа) 6 страница151232 (621636) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

В локализованном состоянии избыточный электрон обладает характерным спектром поглощения. Вид спектра поглощения в основном определяется растворителем (средой) и, в меньшей степени, температурой и состоянием среды (жидкость или стекло). Спектры поглощения электрона обнаружены как в полярных, так и в неполярных жидкостях [73] методами импульсного радиолиза или фотолиза. В стеклах при низких температурах спектры локализованных электронов легко могут быть исследованы обычным методом низкотемпературной спектрофотометрии после облучения стекла. Характерной особенностью квазисвободного электрона является большая величина подвижности электрона в электрическом поле. Подвижности неорганических ионов в воде при комнатной температуре представляют величины порядка 105 см2 /сек-в. Такой же порядок величины характерен для сольватированных электронов во многих полярных жидкостях (вода, гексаметил-фосфортриамид, метилэтилкетон, н-бутанол, диметоксиэтан, моно- и трибутиламины) [74]. Подвижность электронов неполярных жидкостях значительно больше: 0,08 для н-гексана, 0,24 для циклогексана, 7,0 для 2,2,4-триметилпентана, 68 для неопентана и 100 см2 /сек-в для тетраметилсилана . Столь значительные различия в подвижностях объясняются разной вероятностью пребывания электрона в квазисвободном состоянии. В полярных жидкостях эта вероятность очень мала и подвижность избыточного электрона практически совпадает с подвижностью локализованного (сольватированного) электрона. Последняя величина по порядку не отличается от подвижности неорганических ионов. В неполярных жидкостях вероятность квазисвободного состояния электрона значительно больше, чем в полярных жидкостях и сильно зависит от структурных особенностей неполярных молекул. Повышение температуры увеличивает подвижность, что можно объяснить смещением равновесия между квазисвободным и локализованным состояниями электрона.

Константы скорости реакций с участием квазисвободпых электронов аномально велики. Наибольшая скорость обычных молекулярных реакций в жидкой фазе не может превосходить числа встреч реагирующих молекул, т. е. должна определяться броуновским движением молекул. Рассмотрение броуновского движения по методу Смолуховского, основанного на использовании уравнения диффузии, приводит к следующему выражению для константы скорости реакции К, определяемой числом встреч (диффузионная кинетика) [75]:

— сумма радиусов реагирующих молекул; — сумма коэффициентов диффузии тех же молекул. Подставив типичные значения и , получим =1011см3/сек или ~1010 л/мольсек. Так как коэффициенты диффузии обычно неизвестны, то их часто выражают через вязкость среды по формуле Стокса — Эйнштейна. Если считать, что радиусы реагирующих молекул равны, то получим:

где — константа Больцмана; Т - абсолютная температура

Найденные на опыте константы скоростей реакции с участием

квазисвободных электронов в неполярных жидкостях

. (24.1)
или

(25.1)

оказались значительно большими, чем для аналогичных реакций с участием атомов, радикалов, ионов или сольватированных электронов. Константы скорости рекомбинации квазисвободного электрона с катион-радикалом

(26.1)

также значительно больше констант рекомбинации других частиц.

§4. Зависимости интенсивности фосфоресценции при одноквантовых и двухквантовых процессах.

В работах Дерябина М. И. и Ериной М. В.[76] Подробным образом рассмотрена кинетика фосфоресценции органических молекул. Из рассмотрения изменения числа частиц в состояниях , , при облучении системы стационарным потоком:

(27.1)

При рассмотрении трёхуровневой системы, точнее изменения числа частиц при облучении системы излучением с постоянной интенсивностью. При этом пренебрегались вынужденные переходы. Рассматривая описанную выше систему, составлялись уравнения баланса для разгорания и затухания фосфоресценции соответственно:

(28.1) и

(29.1)

Решая данные системы(28.1) и (29.1) методами Эйлера и Бернулли[77], а также пренебрегая вынужденными переходами, был получен закон образования и распада возбуждённых частиц на триплетном уровне:

и

со временем разгорания и затухания соответственно:

и

.

Причём при слабом возбуждении

>> , следовательно .

А при сильном возбуждении < .

Интенсивность фосфоресценции определяется следующим соотношением:

Для двухквантовой реакции, когда лишь малая доля падающего монохроматического излучения поглощается образцом, кинетическое уравнение выглядит следующим образом[53]:

(30.1)

где - интенсивность падающего света ; - коэффициент экстинкции поглощения ; - коэффициент экстинкции поглощения ; -исходная концентрация ароматического соединения; - концентрация этого-же соединения в триплетном состоянии ; - выход триплетных состояний; - время жизни в триплетном состоянии; -вероятность всех путей дезактивации высшего триплетного состояния кроме . После интегрирования получается:

, (31.1)

где

,

Очевидно, стационарная концентрация молекул определяется из (31.1):

,

-константа скорости излучательной дезактивации состояния .

Для стационарной скорости двухквантовой реакции получено следующее выражение[53]:

, (31.2)

где .

При больших интенсивностях света, года веществом поглощается лишь малая часть происходит отклонение зависимости скорости реакции, а следовательно и скорости образования фотопродукта от закона



Глава II.

§1. Спектрофлуориметрическая установка для спектральных и кинетических измерений.

В экспериментальных исследованиях триплетных молекул важное место, наряду со спектральными, занимают кинетические методы [78-80], то есть изучение процессов заселения и распада возбужденных состояний. Определенные из кинетических экспериментов параметры являются характеристиками, как самих молекул, так и их взаимодействия между собой и с матрицей, в случае примесных центров. Особенно важным является то, что параметры кинетики (время накопления и время дезактивации возбужденных состояний), определяются константами скоростей соответствующих переходов и, следовательно, позволяют извлечь информацию, о путях дезактивации триплетно возбужденных молекул. Этим обусловлена необходимость использования кинетических методов для установления и изучения механизмов дезактивации триплетных состояний органических молекул в твердых матрицах при их сенсибилизированном возбуждении.

Одним из направлений исследования межмолекулярных взаимодействий в конденсированных средах является изучение влияния температуры на люминесцентные характеристики центров излучения. Сведения, получаемые при этом, необходимы также для определения констант скоростей процессов, регулирующих накопление молекул в возбужденных состояниях и их деградацию.

С учетом всего вышесказанного была разработана и собрана спектрофлуориметрическая установка, блок схема которой приведена на рис. 2.1. Данная установка позволяла получать и исследовать спектры поглощения и люминесценции, кривые разгорания и затухания фосфоресценции, а также зависимости люминесцентных характеристик изучаемых объектов от температуры[76].

Экспериментальная установка была собрана на базе монохроматора СДМС с дифракционной решеткой 1200 шт/мм, работающей в первом порядке. Обратная линейная дисперсия равнялась 1,2 нм/мм. Данная решетка позволяла исследовать спектр в диапазоне длин волн от 250 до 700 нм. С помощью монохроматора можно было выделять для исследования вибронные полосы в спектре фосфоресценции молекул, узкие спектральные участки в полосах, а также исследовать суммарную интенсивность свечения без разложения в спектр при работе решетки в нулевом порядке. В некоторых опытах, при работе решетки в нулевом порядке, использовалась комбинация различных фильтров для выделения широкого участка спектра в нужной его области. Блок поворота решетки 2 включал в себя синхронный двигатель СД-54 с редуктором, позволяющим изменять скорость ее вращения в широких пределах. Градуировка монохроматора проверялась по линиям излучения ртутной лампы низкого давления. Исследуемый образец 3 помещался в сосуд Дьюара 4 с жидким азотом, который был расположен в темновой камере 5.

Доноры возбуждались излучением ртутной лампы 6 типа ДРТ – 230 с фильтрами выделяющими линию 365 нм или азотным лазером 7 типа ЛГИ – 21 ( нм) с частотой следования импульсов 100 Гц. Плотность мощности в импульсе для нерасфокусированного луча лазера составляла примерно 10 4 Вт/см 2.

Рис. 2.1. Спектрофлуориметрическая установка для спектральных и кинетических измерений.

  1. Монохроматор СДМС

  2. Блок поворота решетки

  3. Исследуемый образец

  4. Сосуд Дьюара

  5. Темновая камера

  6. Лампа ДРТ – 230 (или ДКсШ – 150)

  7. Азотный лазер типа ЛГИ-21

  8. Дейтериевая лампа ДДС-3

  9. Электромеханические затворы

  10. Электромеханические затворы

  11. Реле времени

  12. Переносной пульт управления

  13. Калибратор импульсных напряжений типа В 1-5

  14. Фотоэлектронный умножитель типа ФЭУ-38

  15. Двухкоординатный самописец типа Н-307

  16. Источник питания фотоэлектронного умножителя

  17. Катодный повторитель

Для отделения сенсибилизированной фосфоресценции акцептора от фосфоресценции донора и изучения закона затухания фосфоресценции на различных ее стадиях использовались электромеханические затворы 9 и 10, управляемые с помощью электронных реле времени 11, с применением переносного пульта управления 12. Время срабатывания затворов (перекрывания светового потока) не превышало 5 мс. Электронные реле времени позволяли изменять дискретно задержку времени между началом регистрации и прекращением возбуждения от 0,1 до 30 с. Это давало возможность отделять во времени фосфоресценцию акцептора от фосфоресценции донора в области перекрывания их спектров, даже если интенсивность фосфоресценции донора значительно превышала интенсивность фосфоресценции акцептора. Это также позволяло исследовать кинетику затухания фосфоресценции на различных ее стадиях. Система управления затворами давала возможность формировать световые импульсы возбуждения различной длительности, что было необходимо для изучения зависимости кинетики затухания от продолжительности возбуждения.

Поскольку время срабатывания электромеханических затворов было соизмеримо со временем жизни триплетных молекул донора, то при изучении кинетики затухания фосфоресценции доноров, для возбуждения последней использовались одиночные импульсы или группа импульсов излучаемых лазером ЛГИ-21. В этом случае лазер работал в режиме внешнего запуска и управлялся от калибратора импульсных напряжений 13 типа В 1-5. Длительность импульса излучения лазера ЛГИ-21 приблизительно равнялась . Это давало основания считать, что время спада возбуждения донора намного меньше (на два порядка) времени затухания его фосфоресценции.

Характеристики

Тип файла
Документ
Размер
5,13 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6489
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее