86339 (612726), страница 3

Файл №612726 86339 (Элементы тензороного исчисления) 3 страница86339 (612726) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Предположим, что X - это тензор типа (r,s). Давайте выберем его α-тый нижний индекс: Символы, используемые для других индексов, несущественны. Поэтому, мы обозначили их точками. Затем рассмотрим тензорное произведение

(6.1)

Здесь g - дуальный метрический тензор с элементами . На следующем шаге свернем (6.1) по паре индексов k и q. Для этой цели мы заменяем их на s и проводим суммирование:

(6.2)

В целом вся операция (6.2) называется поднятием индекса. Эта операция обратима. Обратная операция называется опусканием индексов:

(6.3)

Подобно (6.2), операция опускания индекса (6.3) включает в себя две операции над тензорами: тензорное произведение и свертку.

§7.Тензоры в криволинейных координатах

Мы будем рассматривать область аффинного пространства, отнесенную к криволинейным координатам . Радиус-вектор х произвольной точки М области , отсчитываемый от фиксированной точки О, будет выражаться функцией

(7.1)

достаточное число раз непрерывно дифференцируемой. В дальнейшем мы предполагаем, что все рассматриваемые точки принадлежат области .

Для ориентации в строении данной координатной системы весьма полезны координатные линии. Так мы будем называть кривые, вдоль которых меняется лишь одна из координат а остальные остаются постоянными. Рассмотрим, например, координатную линию . Это значит, что закреплены на постоянных значениях, так что радиус-вектор х (7.1) остается функцией одного лишь ; мы получаем кривую, отнесенную к параметру .

Через каждую точку М пройдет одна и только одна координатная линия , именно, если закрепить на значениях, которые они имеют в точке М. Частная производная дает касательный вектор к координатной линии . Все сказанное справедливо и для любых координатных линий, так что через каждую точку М проходят п координатных линий с касательными векторами . Эти векторы мы будем обозначать кратко

(7.2)

Они, как мы знаем, всегда линейно независимы, и потому в каждой точке М могут быть приняты за векторы аффинного репера Таким образом, задание криволинейных координат в области влечет появление в каждой ее точке М вполне определенного аффинного репера Этот аффинный репер мы будем называть локальным репером в точке М.

Когда в качестве частного случая криволинейных координат мы берем аффинные координаты, функция (7.1) принимает вид:

(7.3)

и локальный репер в каждой точке М имеет те же векторы, что и основной репер, на котором построена данная аффинная координатная система.

Для рассмотрения локальных реперов имеются глубокие основания. Именно вспомним те простые свойства, которыми обладали аффинные координаты точек: приращения этих координат при переходе из точки в точку выражали координаты вектора смещения :

поскольку

(говоря о координатах вектора, мы всегда будем иметь в виду его аффинные координаты; криволинейные координаты для векторов не имеют смысла). В этом, можно сказать, и состояла сущность аффинных координат точек.

Для криволинейных координат эти простые свойства теряются. Однако мы находим их снова, если рассматривать криволинейные координаты в бесконечно малой окрестности данной точки М.

Смещаясь из точки в бесконечно близкую точку ,мы находим вектор смещения , как приращение радиуса вектора х точки М:

Пренебрегая бесконечно малыми высшего порядка, заменяем приращение полным дифференциалом и получаем:

(7.4)

Это значит, что вектор смещения в локальном репере имеет координа-ты, равные приблизительно приращениям .

Итак, для бесконечно малых смещений из точки М приращения криволинейных координат снова выражают координаты вектора смещения , если эти последние вычислять в локальном репере в точке М, пренебрегая бесконечно малыми высшего порядка.

Таким образом, при помощи локального репера криволинейным координатам возвращаются свойства аффинных координат, правда, теперь уже лишь в бесконечно малой окрестности данной точки.

Можно сказать также, что приращения криволинейных координат в бесконечно малой окрестности точки М совпадают с точностью 1-го порядка с аффинными координатами относительно локального репера, построенного в точке М.

Естественно, что, занимаясь геометрией аффинного пространства в криволинейных координатах, мы постоянно будем сталкиваться с локальными реперами.

Выясним теперь, что происходит с локальными реперами, когда криволинейные координаты подвергаются преобразованию

(7.5)

которое предполагается однозначно обратимым и непрерывно дифференцируемым в обе стороны. Выражая, обратно,

(7.6)

мы можем считать в уравнении (7.1) радиус-вектор х сложной функцией от . Частная производная по выразится тогда по известной формуле:

В правой части по i, конечно, происходит суммирование. Заметим, что мы будем без стеснения прилагать обычные формулы дифференцирования к выражениям, содержащим векторы, так как справедливость этих формул устанавливается тривиальным образом: достаточно свести дифференцирование векторов к дифференцированию их координат. Окончательно получаем:

(7.7)

Итак, преобразование криволинейных координат влечет за собой преобразование локального репера в каждой точке М, причем векторы нового локального репера разлагаются по векторам старого с коэффициентами .Сравнивая с нашей прежней записью преобразования аффинного репера

мы видим, что (7.7) представляет собой ее частный случай, когда

(7.8)

а роль векторов играют .

Рассмотрим теперь произвольное тензорное поле, например, . Точка М может при этом пробегать всю область или только некоторую поверхность в ней, или даже линию в зависимости от того, где тензорное поле задано.

Координаты тензора можно вычислять относительно любого аффинного репера. Однако в дальнейшем мы всегда будем считать, что аффинное пространство (по крайней мере в пределах области ) отнесено к каким-либо криволинейным координатам . Тогда в каждой точке М возникает локальный репер, и координаты тензора мы будем брать относительно именно этого репера. Эти координаты мы будем кратко называть координатами тензора в данной системе криволинейных координат .

Когда в дальнейшем мы будем говорить о тензорном поле

(76.9)

то всегда будем подразумевать сказанное выше.

Если тензорное поле задано не во всей области , а лишь на некоторой поверхности (линии), то в уравнениях (7.9) нужно задавать, конечно, как функции параметров этой поверхности (линии). Тензорное поле может выродиться и в задание тензора в одной только точке М.

Вслед за преобразованием криволинейных координат происходит преобразование локального репера в каждой точке М, а значит, и преобразование координат тензора по обычному тензорному закону:

(7.10)

При этом, как мы видели, матрица совпадает с матрицей , а следовательно, обратная матрица - с матрицей :

= . (7.11)

Следовательно, закон преобразования (7.10) принимает вид

(7.12)

Таким образом, переход от одних криволинейных координат к другим, влечет за собой преобразование координат тензорного поля по закону (7.12). При этом частные производные по и обратно берутся в той же точке М, как и координаты тензора, что и отмечено в записи.

§8. Примеры вычислений

Пример 1 (Динамика частицы)

В качестве простого приложения тензорного исчисления чуть переформулируем уравнения классической динамики материальной точки.

Второй закон Ньютона в компонентах записывается как

(8.1)

Откуда сразу видна его ковариантность по отношению к преобразованиям из группы О (3). Если силовое поле потенциально, то

(8.2)

Умножая обе части (8.1) на и свертывая по индексам, получим

т.е.

(8.3)

Вводя кинетическую энергию частицу и элементарную работу силы , придем к теореме живых сил.

(8.4)

Инвариантной относительно ортогональных преобразований. Для потенциального стационарного поля сил из (8.4) и (8.2) имеем

Откуда следует закон сохранения энергии:

(8.5)

умножая уравнение (8.1) с индексом k на координату , умножая затем то же уравнение с индексом j на и производя вычитание, получим

Или, после вынесения производной по времени,

(8.6)

Чтобы выяснить смысл этого результата, свернем обе части (8.6) с символом :

Вспоминая определение векторного произведения, придем к теореме об изменении момента импульса частицы:

(8.7)

Пример 2 (Момент инерции)

Момент количества движения L твердого тела, вращающегося относительно фиксированной оси, пропорционален угловой скорости ω, и коэффициент пропорциональности I мы назвали моментом инерции:

Момент инерции тела произвольной формы зависит от его ориентации относительно оси вращения. Моменты инерции прямоугольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость ω и момент количества движения L — оба векторы. Для вращения относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления ω и L, вообще говоря, не совпадают.

(8.8)

Девять коэффициентов называют тензором инерции. Кинетическая энергия T для любого момента количества движения должна быть некоторой квадратичной формой компонент , и :

(8.9)

Мы можем воспользоваться этим выражением для определения эллипсоида инерции. Кроме того, снова можно воспользоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. = .

Тензор инерции твердого тела можно написать, если известна форма тела. Нам нужно только выписать полную кинетическую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией , а полная кинетическая энергия равна просто сумме

Характеристики

Тип файла
Документ
Размер
5,7 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6372
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее