85975 (612616), страница 3

Файл №612616 85975 (Открытые сети с многорежимными стратегиями обслуживания и информационными сигналами) 3 страница85975 (612616) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

где - стационарное распределение изолированного -го узла в фиктивной окружающей среде, определяемое с помощью соотношений (4.1.6).

Доказательство. Для доказательства того, что , определенные в (4.1.15), образуют стационарное распределение марковского процесса , достаточно [94,97,103] подобрать функцию

которая удовлетворяла бы соотношениям

и

Если такие удастся найти (см. [94,97,103]), то окажется, что будут являться инфинитезимальными интенсивностями перехода для обращенной во времени цепи Маркова , а - стационарными вероятностями для и . Положим

для всех остальных состояний положим . Для функции соотношение (4.1.16) действительно выполняется, что легко проверяется подстановкой в него равенств (4.1.8)-(4.1.13), (4.1.18)-(4.1.23) и использования (4.1.4),(4.1.5). Остается доказать (4.1.17). Складывая (4.1.18)-(4.1.23), получим, что

Используя (4.1.1)-(4.1.2), имеем

Применяя снова (4.1.1)-(4.1.2), а также свойства индикаторов, получим

Сравнивая полученный результат с (4.1.14), делаем вывод, что для любого состояния . Докажем, что при выполнении условий (4.1.7) марковский процесс эргодичен. Согласно эргодической теореме Фостера [82], для этого достаточно доказать, что существует нетривиальное неотрицательное решение уравнений глобального равновесия

такое, что ряд сходится. Складывая (4.1.16) по всем , убеждаемся, что является решением (4.1.24). Из (4.1.14) следует, что

Поскольку ряд

распадается в произведение рядов, каждый из которых сходится в силу условия (4.1.7) как сумма бесконечной геометрической прогрессии со знаменателем, меньшим единицы, то и сам он сходится. В силу (4.1.25) будет сходиться ряд

По эргодической теореме Фостера это означает, что марковский процесс эргодичен. Таким образом, теорема доказана полностью.

Замечание 4.1. Если условия (4.1.3) и (4.1.7) выполнены во всех узлах, то получается простой алгоритм для нахождения стационарных вероятностей:

1. Проверяется выполнение условий (4.1.3).

2. Решается система нелинейных уравнений (4.1.1)-(4.1.2).

3. Проверяется выполнение (4.1.7).

4. Определяются с помощью соотношений (4.1.6).

5. Находится стационарное распределение состояний сети с помощью формулы (4.1.15).

Этот алгоритм может быть дополнен алгоритмом расчета совместного стационарного распределения чисел заявок в узлах и совместного стационарного распределения номеров режимов работы узлов, а также расчета моментов этих распределений. Если - состояние сети, где , то через обозначим вектор, характеризующий числа положитнльных заявок в узлах, а через - вектор, характеризующий режимы работы в узлах. Стационарные распределения этих двух векторов обозначим соответственно и .

Нетрудно убедиться, складывая (4.1.15) по всем возможным значениям , что совместное стационарное распределение чисел положительных заявок в узлах имеет следующую форму:

где каждый множитель имеет геометрическое распределение

Производящая функция стационарного распределения числа заявок в -м узле имеет вид

а -й факториальный момент есть

Как и следовало ожидать, в стационарном режиме среднее число положительных заявок и дисперсия числа положительных заявок в каждом узле,

стремятся к нулю, когда загрузка этого узла

Точно так же, складывая (4.1.15) по всем возможным значениям , определим совместное стационарное распределение режимов в узлах сети:

где

Средний номер режима работы -го узла в стационарной сети находится как

Анализ характера выходящих потоков из сети провести крайне трудно, так как эти потоки являются сложными благодаря воздействию отрицательных заявок и из-за нелинейности уравнений трафика.

2. ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ИНФОРМАЦИОННЫМИ СИГНАЛАМИ ДВУХ ТИПОВ

В 1 исследовалось стационарное распределение марковского процесса, описывающего открытую сеть с многорежимными стратегиями обслуживания и отрицательными заявками. Здесь мы рассмотрим открытую сеть массового обслуживания, в которую наряду с отрицательными заявками, называемыми в дальнейшем отрицательными сигналами, поступает еще один вид информационных сигналов, изменяющих режим функционирования обслуживающих устройств в узлах.

На фазовом пространстве задан многомерный марковский процесс , где , своими инфинитезимальными интенсивностями перехода: для

для всех других состояний предполагается, что . Интенсивность выхода получается сложением этих интенсивностей:

Этот процесс описывает сеть, состоящую из однолинейных узлов, в которую поступают четыре независимых стационарных пуассоновских потока: положительных заявок с параметром , отрицательных сигналов с параметром , сигналов уменьшения режима с параметром , сигналов увеличения режима с параметром . Поступление отрицательного сигнала в узел уменьшает число заявок в нем на единицу, если число заявок в узле больше нуля, и не производит никаких изменений, если в узле нет заявок. Сигнал уменьшения режима при поступлении в -й узел с режимом переводит его в режим работы , не изменяя числа заявок в узле, и не производит никаких изменений, если узел находится в режиме работы 0; сигнал увеличения режима при поступлении в -й узел с режимом переводит его в режим работы , не изменяя числа заявок в узле, и не производит никаких изменений, если узел находится в режиме работы . После этих операций информационные сигналы пропадают, не оказывая более влияния на сеть. Поступающие положительная заявка, отрицательный сигнал, сигнал уменьшения и сигнал увеличения режима направляются в -й узел соответственно с вероятностями . Положительная заявка, обслуженная в -м узле, мгновенно направляется в -й узел, с вероятностью оставаясь положительной, с вероятностью превращаясь в отрицательный сигнал, с вероятностью - в сигнал понижения режима, с вероятностью - в сигнал повышения режима, или с вероятностью покидает сеть . Длительность обслуживания прибором -го узла положительных заявок имеет показательное распределение с параметром . Режимы работы и интенсивности перехода с режима на режим определяются как в предыдущем разделе. Состояние сети в момент времени описывается так же, только теперь - число положительных заявок в -м узле в момент .

Предположим, что все величины положительны. Пусть - средние интенсивности поступления в -й узел положительных заявок, отрицательных сигналов, сигналов понижения и повышения режимов соответственно, удовлетворяющие системе нелинейных уравнений трафика:

Уравнения (4.2.3) имеют решение. Действительно, первые два уравнения в (4.2.3) совпадают с уравнениями трафика (4.1.1),(1.1.2), которые имеют решение . Очевидно, по найденным из третьего и четвертого уравнений (4.2.3) однозначно определятся .

Рассмотрим изолированный -й узел в фиктивной окружающей среде, считая, что в него поступают четыре независимых пуассоновских потока: положительных заявок с параметром , отрицательных сигналов с параметром , сигналов уменьшения режима с параметром и сигналов увеличения режима с параметром . Необходимым и достаточным условием обратимости, а, значит, и квазиобратимости изолированного узла является условие

что проверяется с помощью простой модификации доказательства леммы 2.2. Заметим, что это условие заведомо выполняется, когда интенсивности переходов с режима на режим не зависят от состояния узла. Уравнения обратимости для изолированного узла имеют вид:

Из уравнений (4.2.5) находим

Полагая в (4.2.6) и заменяя на , получим:

откуда

Подставляя это в (4.2.7), имеем:

Из условия нормировки находим, что

В силу теоремы Фостера [82] для эргодичности изолированного узла достаточно выполнения неравенств

Доказательство дословно повторяет то, которое использовалось при доказательстве аналогичного утверждения в 4.1.2, с заменой оценки для следующей оценкой:

Отметим то обстоятельство, что вторая часть (4.2.10) заведомо имеет место, когда интенсивности переходов с режима на режим не зависят от состояния узла. Заметим также, что второе неравенство в (4.2.10) гарантирует регулярность марковского процесса, описывающего изолированный узел в фиктивной окружающей среде. Это означает, что за конечное время процесс не может сделать бесконечное число переходов из одного состояния в другое (моменты скачков процесса не могут иметь конечной предельной точки).

Теорема 2.2. [45, C.186] Если для всех выполняются условия (4.2.4) и (4.2.10), то марковский процесс эргодичен, а его стационарное распределение имеет форму произведения (4.1.15), где определяются с помощью соотношений (4.2.8),(4.2.9).

Доказательство. Для доказательства того, что , определенные в (4.1.15),(4.2.5),(4.2.6), образуют стационарное распределение марковского процесса , достаточно [94,97,103] подобрать функцию которая удовлетворяла бы соотношениям

Если такие удастся найти (см. [94,97,103]), то окажется, что будут являться инфинитезимальными интенсивностями перехода для обращенной во времени цепи Маркова , а - стационарными вероятностями для и . Положим

Характеристики

Тип файла
Документ
Размер
4,55 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее