85524 (612501)

Файл №612501 85524 (Бипримарные группы)85524 (612501)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

"Гомельский государственный университет

имени Франциска Скорины"

Математический факультет

Кафедра алгебры и геометрии

Курсовая работа

БИПРИМАРНЫЕ ГРУППЫ

Исполнитель:

студентка группы H.01.01.01 М-33

Стародубова Н.С.

Научный руководитель:

доктор физико-математических наук,

профессор кафедры Алгебры и геометрии

Монахов В. С.

Гомель 2003

Содержание

Введение

1.Основные обозначения

2. Разрешимость факторизуемой группы с разложимыми факторами

3. О произведении 2-разложимой группы и группы Шмидта

4. Произведение бипримарной и 2-разложимой групп

5. Произведение бипримарной и примарной групп

6. Доказательство теоремы (3)

Заключение

Список литературы

Введение

В данной курсовой работе приводятся свойства конечных групп, являющихся произведением двух групп, а именно являющихся произведением двух групп, одна из которых группа Шмидта, а вторая 2-разложимая, произведением бипримарной и 2-разложимой групп.

В третьем пункте данной курсовой работы доказываются следующие теоремы:

Теорема. Пусть и --- подгруппы конечной группы и пусть . Если подгруппы и -разложимы для каждого , то разрешима.

Теорема. Пусть и --- подгруппы конечной группы и пусть . Предположим, что и --- -замкнуты для каждого . Если и -разложимы и -разложимы, то разрешима.

В четвертом пункте доказазываются приведенные ниже теоремы.

Теорема. Пусть есть группа Шмидта, --- 2-разложимая группа, порядки и взаимно просты. Если и --- конечная неразрешимая группа, то , , и --- простое число или для некоторого простого .

Теорема. Пусть --- группа Шмидта; --- -разложимая группа, где . Если и --- простая группа, то , или и --- простое число.

В пятом пункте доказываются следующие теоремы:

Теорема. Пусть конечная группа является произведением своих подгрупп и взаимно простых порядков, и пусть --- бипримарная группа, а --- 2-разложимая группа четного порядка. Предположим, что в есть неединичная циклическая силовская подгруппа . Тогда, если неразрешима, то изоморфна или .

Теорема. Пусть неразрешимая группа является произведением бипримарной подгруппы и примарной подгруппы . Тогда, если среди силовских подгрупп группы есть циклическая, то изоморфна одной из следующих групп:

1) ;

2) ;

3) ;

4) ;

5) ;

6) , где --- силовская 3-подгруппа;

7) , порядок равен , а .

1. Основные обозначения

группа

является подгруппой группы

является нормальной подгруппой группы

прямое произведение подгрупп и

подгруппа Фраттини группы

фактор-группа группы по

множество всех простых делителей натурального числа

множество всех простых делителей порядка группы

коммутант группы

индекс подгруппы в группе

2. Разрешимость факторизуемой группы с разложимыми факторами

Конечная группа называется -разложимой для простого числа , если силовская -подгруппа выделяется в ней прямым множителем. Нильпотентная группа -разложима для каждого . Через обозначается множество всех простых делителей порядка группы .

Теорема 1Пусть и --- подгруппы конечной группы и пусть . Если подгруппы и -разложимы для каждого , то разрешима.

Теорема (1) обобщает известную теорему Виландта-Кегеля о разрешимости конечной группы, являющейся произведением нильпотентных подгрупп 1.

Для доказательства теоремы (2) нам потребуется следующая лемма(3), которая несколько уточняет лемму Кегеля(4). Напомним, что --- центр , а если --- подгруппа группы , то --- наименьшая нормальная в подгруппа, содержащая . Группа называется -замкнутой, если в ней силовская -подгруппа нормальна.

Лемма 2Пусть и --- подгруппы конечной группы , обладающие следующими свойствами:

1) для всех ;

2) , где .

Тогда .

Доказательство. Воспользуемся методом доказательства леммы Кегеля. Пусть --- наибольшая -подгруппа, содержащая и перестановочная с каждой подгруппой, сопряженной с . Предположим, что не содержится в . Это означает, что существуют элементы и такие, что не принадлежит . Поэтому --- собственная подгруппа в и есть -группа. Кроме того, перестановочна с каждой сопряженной с подгруппой, так как этим свойством обладает . Теперь для всех , что противоречит выбору .

Итак, . Значит, и --- нормальная в -подгруппа. Из условия 2) следует, что и . Так как и , то . Поэтому .

Лемма 3Пусть конечная группа с -замкнутыми подгруппами и . Если , то .

Доказательство. Так как , то для всех , . Первое условие леммы (5) выполнено. Так как выполняется и второе, то .

Секцией группы называется фактор-группа некоторой подгруппы из . Если не содержит секций, изоморфных симметрической группе четырех символов, то называется -свободной.

Лемма 4Если конечная группа не является -свободной, то существуют -подгруппы и такие, что нормальна в и .

Доказательство. По условию в группе существует секция , изоморфная . Пусть --- нормальная в подгруппа индекса , содержащая подгруппу с индексом . По лемме Фраттини , где --- силовская -подгруппа из , Так как имеет индекс в силовской -подгруппе из , то разрешима и содержит -холловскую подгруппу . Кроме того, и .

Лемма 5Конечная группа, содержащая нильпотентную -холловскую подгруппу, -разрешима.

Доказательство. Достаточно показать непростоту группы в случае, когда делит . Предположим, что простая и делит . В -свободных группах нет нильпотентных -холловских подгрупп 2, отличных от -силовской. Если не -свободна, то по лемме 4 существует ненильпотентная -подгруппа. Это противоречит теореме Виландта 1. Лемма доказана.

Через обозначим произведение всех разрешимых нормальных в подгрупп.

Лемма 6Пусть конечная группа и пусть разрешима, а взаимно прост с . Если в существует нилъпотентная -холловская подгруппа, то разрешима.

Доказательство. Если --- -группа, то разрешима по лемме Сыскина(2). Пусть делит и --- минимальная нормальная в подгруппа. Если , то и разрешима по индукции, поэтому разрешима и . Пусть . Тогда и имеет порядок взаимно простой с . Значит нильпотентная -холловская подгруппа из содержится в и -разрешима по лемме(2). Из минимальности следует, что разрешима. Итак, в любом случае содержит разрешимую нормальную подгруппу . Фактор-группа удовлетворяет условиям леммы и по индукции разрешима. Поэтому разрешима и . Лемма доказана.

Теорема 1 вытекает из следующей более общей теоремы

Теорема7 Пусть и --- подгруппы конечной группы и пусть . Предположим, что и --- -замкнуты для каждого . Если и -разложимы и -разложимы, то разрешима.

Доказательство индукцией по порядку . Пусть --- минимальная нормальная в подгруппа. Фактор-группа , а подгруппы и будут - и -разложимыми и -замкнутыми для каждого . По индукции разрешима, а неразрешима. Поэтому и . Следовательно, в единственная минимальная нормальная подгруппа.

Пусть и пусть и --- силовские -подгруппы из и соответственно. Так как и р-замкнуты и , то по лемме 3. Но содержит точно одну минимальную нормальную подгруппу. Поэтому либо , либо . Итак для каждого , либо не делит , либо не делит . Следовательно, порядки и взаимно просты. Но теперь --- простая группа.

Так как группа Судзуки нефакторизуема(4), то по теореме Глаубермана (4)порядок делится на , а по теореме Фомина (2) порядок одного из факторов, пусть порядок , делится на . Теперь в существует нильпотентная -холловская подгруппа. По лемме (3)группа разрешима. Теорема доказана.

3. О произведении 2-разложимой группы и группы Шмидта

Пусть конечная группа является произведением двух своих подгрупп и , причем есть группа Шмидта, т. е. ненильпотентная группа, все собственные подгруппы которой нильпотентны. Признаки разрешимости группы при дополнительных ограничениях на подгруппы и получили Б. Хупперт(2), В. А. Ведерников(4), И. П. Докторов(4), П. И. Трофимов(3). Если дедекиндова, т. е. в все подгруппы инвариантны, то простая группа описана автором в(5). Как сообщил недавно С. А. Сыскин, им изучена простая группа в случае, когда --- нильпотентная группа.

Основным результатом настоящей заметки является

Теорема8 Пусть есть группа Шмидта, --- 2-разложимая группа, порядки и взаимно просты. Если и --- конечная неразрешимая группа, то , , и --- простое число или для некоторого простого .

обозначает наибольшую разрешимую инвариантную в подгруппу.

Характеристики

Тип файла
Документ
Размер
13,2 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее