85524 (612501), страница 2

Файл №612501 85524 (Бипримарные группы) 2 страница85524 (612501) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Из этой теоремы непосредственно следует описание простых групп , если --- группа Шмидта, а --- -разложимая группа, где состоит из простых делителей порядка и 2 (см. теорему(2)). В теореме (5) доказано, что неразрешимая группа , где подгруппа есть группа Шмидта, а --- нильпотентная подгруппа, есть группа из заключения теоремы(4).

Рассматриваются только конечные группы. обозначает порядок группы , а --- множество всех простых делителей . Если --- некоторое множество простых чисел, то --- наибольшая инвариантная в -подгруппа. --- подгруппа, порожденная всеми сопряженными с подгруппами в . Остальные обозначения можно найти в 11.

Свойства групп Шмидта хорошо известны 12, наиболее полно они изложены в(5). В данной работе они используются без ссылок.

Следующие два результата о простых группах понадобятся при доказательстве.

Теорема Мазуров -- Сыскин 99 Если --- простая группа с силовской 2-подгруппой, изоморфной неабелевой силовской 2-подгруппе из группы Шмидта, то для некоторого .

Теорема Гольдшмидт 1010 Если в простой группе силовская 2-подгруппа неабелева и , для всех и некоторой абелевой неединичной подгруппы из , то или .

Лемма 11 Пусть разрешимая группа , где --- группа нечетного порядка, --- 2-замкнутая группа четного порядка и . Если , то

Доказательство проведем индукцией по порядку группы . Введем следующие обозначения: ; --- минимальная инвариантная в подгруппа; ; --- силовская 2-подгруппа; --- ее дополнение. Ясно, что . Если , то , отсюда и . Пусть и --- минимальная инвариантная -подгруппа в . Тогда и , где --- силовская -подгруппа для . Можно считать, что , поэтому . Кроме того, неинвариантна в , значит --- собственная в подгруппа. Замечание Фраттини дает, что . Теперь и . Так как , то , т. е. --- собственная в подгруппа. Порядки и взаимно просты, поэтому . По индукции , поэтому и . Лемма доказана.

Доказательство теоремы(4). Допустим, что теорема неверна и группа --- контрпример минимального порядка. Пусть , --- инвариантная силовская -подгруппа, --- силовская -подгруппа. Так как факторгруппа группы Шмидта является либо группой Шмидта, либо циклической -группой, то благодаря теореме В. А. Ведерникова (5)можно считать, что .

Допустим, что группа непроста и --- минимальная инвариантная в подгруппа. Тогда --- неразрешимая группа.

Предположим, что не содержит . Тогда нильпотентна, а так как , то по теореме Я. Г. Берковича (6) подгруппа имеет четный порядок. Теперь по теореме 1 из (5) получаем, что силовская 2-подгруппа в неабелева. Так как , то из свойств групп Шмидта следует, что содержится в и --- силовская 2-подгруппа в . Если непроста, то --- неразрешимая группа, где --- некоторая инволюция из центра . Так как и --- группа Шмидта четного порядка, то по индукции , или , --- простое число. Замечая, что и --- абелева группа порядка 4 или , получаем, что, . Теперь должно быть четным числом, значит, . В этих случаях и --- группа кватернионов порядка 8, что противоречит тому, что . Следовательно, --- простая группа. По теореме Мазурова-Сыскина группа изоморфна . Поэтому , значит, и

Порядок факторгруппы равен , и делится на . Так как , то делит порядок . Это противоречит взаимной простоте порядков факторов.

Следовательно, содержит подгруппу . Так как --- циклическая силовская подгруппа в , то --- простая группа и по индукции , или , где --- простое число. Так как , разрешима, a , то . Теперь изоморфна некоторой подгруппе из . Если или , то или . допускает факторизацию с группой Шмидта порядка 21 и 2-группой порядка 16. Группа не допускает требуемой факторизации. Если --- простое число, то и --- простое число. Так как , где , то . Противоречие.

Таким образом, --- простая группа.

Предположим, что силовская 2-подгруппа группы абелева. Тогда по результату Уолтера 25 группа может быть изоморфной только одной из следующих групп: , или , группе Янко порядка 175560 или группе типа Ри. Из групп для указанных лишь группы или , где --- простое число, допускают нужную факторизацию 26. Группа Янко не допускает требуемой факторизации 18. Порядок группы делится более чем на три простых числа, и силовская 3-подгруппа содержит свой централизатор, элемент порядка 9 и неабелева(5). Поэтому неизоморфна .

В дальнейшем будем считать, что силовская 2-подгруппа в неабелева. Так как порядки и взаимно просты, то некоторая силовская 2-подгруппа из содержится либо в , либо в . Если , то и группа изоморфна для некоторого . Но в этом случае , поэтому , и делит . Так как , то делит . Но порядок делится на , а значит, и на . Противоречие.

Следовательно, . Теперь , , --- инвариантное 2-дополнение в . Если , то и ввиду леммы Бернсайда 20. Поэтому , --- элементарная абелева -группа и --- показатель числа по модулю . Из результатов Уолеса 21 непосредственно получаем, что . Противоречие.

Значит, . Введем следующие обозначения: --- минимальная инвариантная в подгруппа; --- силовская подгруппа из , содержащая ; ; . Так как , то и разрешима. Кроме того, и по лемме С. А. Чунихина ((4), см. также лемму 1.16.1 из(3)) не содержит подгрупп инвариантных в . Применяя лемму 11 настоящей работы, получаем, что . Так как и , то и . Таким образом, .

Пусть . Покажем, что для всех . Возьмем произвольный элемент , . Тогда , поэтому , . Теперь . Так как , то . Применяя результат Гольдшмидта, получаем: или . Но этот изоморфизм ввиду невозможен. Противоречие. Теорема доказана.

Лемма12 Пусть --- простое число, делящее порядки групп и . Если --- группа Шмидта, а --- -разложимая группа, то группа непроста.

Доказательство. Пусть --- силовская -подгруппа из , а --- силовская -подгруппа из , для которых и есть силовская -подгруппа в 20.

Пусть инвариантна в . Тогда для любого , , имеем: . По лемме Кегеля 20 группа непроста.

Пусть неинварпантна в . Тогда циклическая и каждая собственная подгруппа из инвариантна в . Если --- силовская подгруппа в , то и , где --- силовская подгруппа из . По лемме Бернсайда группа непроста. Пусть не является силовской в . Тогда содержится как подгруппа индекса в некоторой группе , . Для элемента теперь содержит и . Если , то непроста по лемме Бернсайда. Если , то и непроста по лемме С. А. Чунихина.

Теперь из теоремы (2) и леммы (5) вытекает

Теорема13 Пусть --- группа Шмидта; --- -разложимая группа, где . Если и --- простая группа, то , или и --- простое число.

Ясно, что условие теоремы 13 охватывает случай, когда нильпотентна.

Теорема14 Пусть --- неразрешимая группа, где --- группа Шмидта, --- нильпотентная группа. Тогда . и --- простое число, или для некоторого простого числа .

Доказательство. Пусть группа --- контрпример минимального порядка. Как и в теореме 8, пусть . Ясно, что . Группа не является произведением группы Шмидта и нильпотентной группы, поэтому из теоремы 8 следует, что порядки и не взаимно просты, а из леммы 12 вытекает, что --- непростая группа.

Допустим, что порядок делится на и пусть --- силовская -подгруппа из . Тогда --- неразрешимая группа, поэтому из теоремы Виландта-Кегеля следует, что . Так как есть -группа, то и по лемме из (4) группа есть -группа, противоречие. Следовательно, порядок не делится на . Но тогда делит порядок . Рассуждая как и в лемме, получаем, что , а из следует, что .

Пусть --- минимальная инвариантная в подгруппа. В силу теоремы Виландта-Кегеля и разрешима. Если , то, применяя к индукцию, получаем, что или и --- простое число, а группа из заключения теоремы, противоречие. Значит, , кроме того, и , где --- силовская -подгруппа из , --- инвариантное -дополнение в . Проверка показывает, что --- простая группа. Пусть --- силовская -подгруппа из , для которой . Если , то централизатор элемента из содержит подгруппы и , что противоречит простоте . Далее, , поэтому --- подгруппа. Но , значит, .

Пусть --- силовская 2-подгруппа в , тогда --- силовская в . Как и в теореме 8, можно показать, что неабелева и неизоморфна . Значит, . Пусть , --- дополнение к в . Если , то повторение соответствующих рассуждений из теоремы приводит к противоречию. Значит, . Так как , то из результата Уолеса заключаем, что изоморфна одной из следующих групп: , , , , , . Для них группа Шмидта должна иметь соответственно следующие порядки: , , , , , , причем , 5, 7, 7, 13 или 17 соответственно. Но это возможно лишь когда или и в силовская 3-подгруппа абелева. Так как и в и силовские 3-подгруппы неабелевы, то получили противоречие. Теорема доказана.

4. Произведение бипримарной и 2-разложимой групп

В (1) описаны конечные неразрешимые группы, являющиеся произведением двух подгрупп взаимно простых порядков, одна из которых есть группа Шмидта, а вторая --- 2-разложимая группа (см. также(2)). Все свойства группы Шмидта хорошо известны, в частности, она бипримарна, т. е. ее порядок делится в точности на два различных простых числа, и в ней содержится неединичная циклическая силовская подгруппа.

Характеристики

Тип файла
Документ
Размер
13,2 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее