62171 (611438), страница 2

Файл №611438 62171 (Автоматическая система регулирования с П-регулятором) 2 страница62171 (611438) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Таблица 1

Статическая характеристика объекта регулирования.

i

1

2

3

4

5

6

7

8

9

10

X

0

1

2

3

4

5

6

7

8

9

Y

0

0,1

0,5

1

1,5

2

2,5

3

3,2

3,5

Для построения статической характеристики необходимо табличные данные аппроксимировать полиномами первого и второго порядков.

Затем необходимо рассчитать сумму квадратов отклонений для каждой статистической характеристики объекта, и выбрать такую характеристику, у которой сумма квадратов отклонений будет наименьшей. Затем для этой модели рассчитаем коэффициент передачи объекта.

    1. Аппроксимация полиномом первого порядка

Модель первого порядка описывается уравнением вида:

y=a∙x+b

Для нахождения коэффициентов а и b составим систему линейных алгебраических уравнений, причем число уравнений в системе равно числу состояний объекта в эксперименте.

Для решения данной системы алгебраических уравнений воспользуемся матричным методом наименьших квадратов. Составим матрицы входных и выходных сигналов:

Получим систему с двумя неизвестными: X . A = Y

Транспонируем матрицу Х:

Умножив слева обе части исходной системы на транспонированную матрицу коэффициентов, получим систему, число уравнений в которой равно числу неизвестных, а решение этой системе будет доставлять минимум критерий оптимизации.

XT . X . A = XT . Y

Получим систему двух линейных алгебраических уравнений первого порядка:

Найдем главный определитель матрицы:

Найдем вспомогательные определители системы:

Найдем коэффициенты а и b:


Таким образом, получим полином:

у =0.428 . х - 0.198

Для оценки полученного полинома вычислим значения функции и сравним их с экспериментальными данными.

Результаты вычисления сведем в таблицу. таблица 2

i

x

y

yi

Δyi

1

0

0

-0.198

0.198

2

1

0.1

0.203

-0.130

3

2

0.5

0.658

-0.158

4

3

1

1.086

-0.086

5

4

1.5

1.514

-0.014

6

5

2

1.942

0.058

7

6

2.5

2.370

0.130

8

7

3

2.798

0.202

9

8

3.2

3.226

-0.026

10

9

3.5

3.654

-0.154

Сумма квадратов отклонений:

уi 2 = 0.174

Ниже приведен проверочный расчет модели объекта первого порядка на ЭВМ в системе MathCad.

    1. Аппроксимация полиномом второго порядка

Модель второго порядка описывается уравнением вида:

у = а . х + b . х + с.

Для нахождения коэффициентов а, b, с, удовлетворяющих всем состояниям объекта регулирования составим систему алгебраических уравнений второго порядка, причем число уравнений в системе равно числу состояний объекта в эксперименте:

Для решения данной системы алгебраических уравнений воспользуемся матричным методом наименьших квадратов. Составим матрицы входных и выходных сигналов:

Получим систему с тремя неизвестными: X . A = Y

.

Решим матричное уравнение:

Х т . Х . А = Х т . У

где А - матрица коэффициентов полинома второго порядка.

Получим систему трех алгебраических уравнений


Решив ее, определим коэффициенты a, b, c.

Найдем главный определитель системы:

Найдем вспомогательные определители системы:

Найдем коэффициенты a,b,c:

Таким образом, получили полином второго порядка:

y = -0.00152 . xi2 + 0.442121 . xi -0.21636

Для оценки полученного полинома вычислим значения функции и сравним их с экспериментальными данными:

Полученные результаты сведем в таблицу 3

i

x

y

yi

Δy

1

0

0

-0.216

0.216

2

1

0.1

0.224

-0.124

3

2

0.5

0.662

-0.162

4

3

1

1.096

-0.096

5

4

1.5

1.528

-0.028

6

5

2

1.956

0.044

7

6

2.5

2.382

0.118

8

7

3

2.804

0.196

9

8

3.2

3.224

-0.024

10

9

3.5

3.640

-0.14

Сумма квадратов отклонений равна: уi 2 = 0.173

Ниже приведен проверочный расчет модели объекта первого порядка на ЭВМ в системе MathCad.

Сравнивая суммы квадратов отклонений видно, что полином второго порядка лишь немногим точнее описывает поведение объекта, чем полином первого порядка. Из чего следует, что поведение объекта подчиняется уравнению очень близкому уравнению линии. Для расчетов используем уравнение найденное с помощью полинома второго порядка.

    1. Расчет коэффициентов передачи

Для статической модели первого порядка коэффициент передачи определяется как производная от выходной величины:

Коэффициент передачи объекта показывает в какую сторону и в какой степени происходит изменение сигнала при прохождении его через объект, то есть усилительные свойства объекта.

Для статической модели первого порядка коэффициент передачи определяется как производная от выходной величины:

Для статической модели второго порядка коэффициент передачи определяется как производная от выходной величины:

Расчет коэффициентов передачи производим при 10, 50 и 90%

Рассчитаем значение коэффициента передачи при 10 % по формуле:

где - максимальное установившееся значение сигнала.

- минимальное значение сигнала.

Подставляя полученные данные, получим:

Выбираем х1, т.к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 10 % номинального режима:

Рассчитаем значение коэффициента передачи при 50 % по формуле:

Подставляя полученные данные, получим:

Выбираем х1, т. к только он входит в диапазон экспериментальных значений. Подставим значение х1 в (1.2) и получим значение коэффициента передачи при 50 % номинального режима:

Характеристики

Тип файла
Документ
Размер
11,34 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее