206 (599283), страница 5
Текст из файла (страница 5)
Конструкция ЗУ зависит от области применения ЛА, а также от конструктивного выполнения и компоновки ТБ и ДУ.
На маломанёвренных ЛА обычно применяются тарельчатые или сифонные ЗУ.
При сливе КТ через сливное отверстие в баке в конце опорожнения образуется воронка, приводящая к двухфазному течению в сливном трубопроводе.
Переход к двухфазному течению при вихревом воронкообразовании происходит при больших высотах уровня, чем при возникновении воронки без вращения. Поэтому для уменьшения остатков незабора применяют ЗУ, понижающие величину критического уровня.
На величину остатков незабора топлива оказывают влияние:
-
форма топливного бака;
-
форма днища, с которого производится забор КТ;
-
место отбора (центральное или боковое);
-
способ, применяемый для исключения вихревой воронки;
-
массовый секундный расход КТ.
Для бака окислителя выбираем тарельчатое ЗУ с центральным отбором КТ, а для бака горючего – тарельчатое ЗУ с боковым отбором КТ.
8.1 Выбор типов и основных геометрических размеров заборных устройств
Расчёт проводится согласно [4].
Выбор основных размеров заборного устройства бака окислителя
Диаметр тарели:
.
Высота установки тарели:
.
Радиус перехода в сопряжении днище – трубопровод:
.
Диаметр рёбер тарели:
.
Радиус внутреннего контура тарели:
.
Рис.11. Схема заборного устройства бака окислителя
Выбор основных размеров заборного устройства бака горючего
Диаметр тарели:
.
Высота установки тарели:
.
Радиус перехода в сопряжении днище – трубопровод:
.
Диаметр рёбер тарели:
.
Радиус внутреннего контура тарели:
.
Рис.12. Схема заборного устройства бака горючего
8.2 Расчёт полных остатков незабора
Исходные данные:
Кинематическая вязкость окислителя ;
Кинематическая вязкость горючего ;
Коэффициент поверхностного натяжения окислителя ;
Коэффициент поверхностного натяжения горючего .
Расчёт полных остатков незабора окислителя
Число Рейнольдса:
.
Число Фруда:
,
где – ускорение свободного падения.
Вспомогательные коэффициенты:
.
.
.
Относительный критический уровень:
Высота уровня жидкости при которой происходит прорыв газа в сливной трубопровод:
.
Остатки незабора для ТБ со сферическим днищем и центральным расположением ЗУ:
,
где - радиус бака;
- коэффициент, учитывающий объём воздушной воронки;
- коэффициент, учитывающий форму днища;
.
Остатки незабора на продольных элементах ТБ
.
Средняя толщина плёнки на продольном силовом наборе:
.
,
где – скорость
опускания уровня жидкости в топливном баке.
Смачиваемая боковая поверхность бака:
.
Смачиваемая поверхность силового набора (гасителей колебаний) бака:
,
где – ширина элемента силового набора;
n = 4 – количество элементов силового набора.
Остатки незабора на поперечных элементах ТБ
.
Средняя толщина плёнки на поперечном силовом наборе:
.
Смачиваемая поверхность бака:
,
где – высота сферического днища.
Остатки окислителя в магистралях
;
где – длина трубопровода от бака до входа в насос окислителя.
Суммарные остатки незабора окислителя
Суммарная масса остатков незабора окислителя
.
Расчёт полных остатков незабора горючего
Число Рейнольдса:
.
Число Фруда:
.
Вспомогательные коэффициенты:
.
.
.
Относительный критический уровень:
Высота уровня жидкости при которой происходит прорыв газа в сливной трубопровод:
.
Остатки незабора для ТБ со сферическим днищем и боковым расположением ЗУ:
где
- высота застойной зоны (определяем после прочерчивания ЗУ);
- радиус тоннельной трубы.
Остатки незабора на продольных элементах ТБ
Средняя толщина плёнки на продольном силовом наборе:
.
,
где – скорость опускания уровня жидкости в топливном баке.
Смачиваемая боковая поверхность бака:
.
Смачиваемая поверхность силового набора (гасителей колебаний) бака:
.
Смачиваемая поверхность тоннельной трубы:
.
Остатки незабора на поперечных элементах ТБ
.
Средняя толщина плёнки на поперечном силовом наборе:
.
Смачиваемая поверхность бака:
.
Остатки горючего в магистралях
;
где – длина трубопровода от бака до входа в насос горючего.
Суммарные остатки незабора горючего
Суммарная масса остатков незабора горючего
.
9. Расчёт гидравлических потерь в магистралях трубопроводов
Расчёт проводится согласно [4].
Рис.13. Расчётные схемы магистралей горючего (а) и магистралей окислителя (б)
Исходные данные:
Длина основной магистрали окислителя (ЗУ - насос) ;
Длина основной магистрали горючего (ЗУ - насос) ;
Длина питающей магистрали окислителя (насос - КС) ;
Длина питающей магистрали горючего (насос - КС) .
9.1 Расчёт гидравлических потерь в магистралях горючего
Расчёт потерь в трубопроводе горючего от ЗУ до входа в насос
Ранее было получено:
- диаметр трубопровода горючего от ЗУ до насоса горючего ;
- скорость горючего в трубопроводе .
Определяем число Рейнольдса:
.
Определяем коэффициент трения:
,
где - средняя шероховатость поверхности трубопроводов диаметром
.
Определяем потери давления на трение:
.
Определяем потери давления на создание скорости:
.
Определяем потери давления на местных сопротивлениях:
,
где - коэффициент местных потерь на заборном устройстве.
; принимаем
;
- коэффициент местных потерь на пиромембране.
; принимаем
.
Определяем суммарные потери давления:
.
Расчет потерь в трубопроводе горючего от насоса горючего до КС
Так как расход компонента значительный, то скорость течения жидкости на участке от насоса горючего до камеры сгорания примем равной .
Диаметр трубопровода:
,
Окончательно принимаем .
Пересчитываем скорость течения:
.
Определяем число Рейнольдса:
.
Определяем коэффициент трения:
.
Определяем потери давления на трение:
.
Определяем потери давления на создание скорости:
.
Определяем потери давления на местных сопротивлениях:
где - коэффициент местных потерь на разветвление потока.
; принимаем
;
– коэффициент местных потерь на клапане. Принимаем
;
– коэффициент местных потерь на дросселе. Принимаем
;
Определяем суммарные потери давления:
.
Суммарные потери давления в трубопроводе горючего от ЗУ до КС
.
9.2 Расчёт гидравлических потерь в магистралях окислителя
Расчёт потерь в трубопроводе окислителя от ЗУ до входа в насос
Ранее было получено:
- диаметр трубопровода окислителя от ЗУ до насоса окислителя ;
- скорость горючего в трубопроводе .
Определяем число Рейнольдса:
.
Определяем коэффициент трения:
,
где - средняя шероховатость поверхности трубопроводов диаметром
.
Определяем потери давления на трение:
.
Определяем потери давления на создание скорости:
.
Определяем потери давления на местных сопротивлениях:
,
где - коэффициент местных потерь на заборном устройстве.
; принимаем
;
- коэффициент местных потерь на пиромембране.
; принимаем
.
Определяем суммарные потери давления:
.
Расчет потерь в трубопроводе окислителя от насоса окислителя до КС
Так как расход компонента значительный, то скорость течения жидкости на участке от насоса окислителя до камеры сгорания примем равной .
Диаметр трубопровода:
,
Окончательно принимаем .
Пересчитываем скорость течения:
.
Определяем число Рейнольдса:
.
Определяем коэффициент трения:
.
Определяем потери давления на трение:
.
Определяем потери давления на создание скорости:
.
Определяем потери давления на местных сопротивлениях:
где - коэффициент местных потерь на разветвление потока.
; принимаем
;
– коэффициент местных потерь на клапане. Принимаем
;
– коэффициент местных потерь на дросселе. Принимаем
;
Определяем суммарные потери давления:
.
Суммарные потери давления в трубопроводе окислителя от ЗУ до КС
.
10. Уточнённый расчёт топливного отсека
Исходные данные:
Длина основной магистрали окислителя (ЗУ - насос) ;
Длина основной магистрали горючего (ЗУ - насос) ;
Диаметр трубопровода горючего от ЗУ до НГ ;
Диаметр трубопровода окислителя от ЗУ до НО ;
Диаметр туннельной трубы ;
Коэффициент объёма воздушной подушки ;
Объём остатков незабора для БГ ;
Объём остатков незабора для БО ;
Рабочий объём горючего ;
Рабочий объём окислителя ;
Диаметр ступени .
Выполнение расчёта:
Из расчёта, выполненного в пункте 3.2, возьмем следующие данные:
- радиус сферы верхнего и нижнего днищ баков;