86367 (597885)

Файл №597885 86367 (Побудова простих великих чисел)86367 (597885)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Размещено на http://www.allbest.ru/

Побудова великих простих чисел.

Розглянемо методи перевірки чисел на простоту, при застосуванні яких можна стверджувати, що перевіряючі числа дійсно є простими.

На відміну від попередніх тестів, які використовували необхідні умови простоти й давали відповіді типу - не просте, або не знаю або імовірність того, що – не просте, не вище заданого як завгодно малого значення, дані тести засновані на застосуванні достатніх умов простоти. Тому вони можуть давати як відповіді типу - не просте, не знаю, так й - просте.

Ця властивість застосовується для побудови простих чисел. Загальна схема в цьому випадку така: обирається деяка послідовність чисел спеціального виду, серед яких потрібно знайти просте число, потім до чисел із цієї послідовності застосовується тест доти, доки він не дасть позитивну відповідь.

Якщо ця відповідь - не просте, то обирається наступне число. Якщо отримано відповідь - просте, то шукане просте число побудоване.

Розглянемо достатні умови простоти чисел, які, звичайно, застосовуються в алгоритмах побудови доказово простих чисел.

Критерій Люка.

Теорема, уперше доведена Люка в 1876 р., перетворює малу теорему Ферма в критерій простоти числа , достатня умова якого може бути ефективно використана для доказу простоти цього числа.

Теорема 1. (Люка)

Натуральне число є простим у тому і тільки в тому випадку, коли виконується умова

(1)

Доведення.

Якщо просте, то в полі є примітивний елемент, що і буде шуканим. Навпаки, нехай для елемента виконується умова (1). Якщо , те , причому умова (1) гарантує, що . Отже, і
– просте. Теорема доведена.

Зауваження (Селфридж).

Умова (1) у даній теоремі можна замінити на кожну з таких умов:

(2)

(3)

Дійсно, те, що (1) =>(2) й (1)=>(3) , очевидно.

Доведемо, що (3)=>(2) . Нехай . За умовою для кожного знайдеться таке, що , але не ділить число .

Отже, . Отже, знайдуться елементи , такі, що . Тепер елемент буде шуканим, тому що порядки елементів взаємно прості й

Теорема Люка дозволяє довести простоту числа у випадку, коли відоме розкладання на прості співмножники числа

Для цього можна використати детермінований алгоритм, заснований на переборі всіх можливих значень , або скористатися таким імовірнісним методом:

  1. обираємо випадкові числа й перевіряємо для них умову (1);

  2. якщо умова (1) виконана хоча б для одного із цих чисел, то просте, якщо ні, то відповідь невідома.

Аналогічний метод можна побудувати, використовуючи умову (3).

Проілюструємо цей метод стосовно до чисел Ферма.

Числами Ферма називають числа виду (Покажіть, що число виду може бути простим у тому і тільки в тому випадку, коли .)

Ферма висловлював припущення, що всі числа такого виду – прості. При це дійсно так. Але при , як показав Ейлер в 1732 р., справедливе розкладання

.

В 1878р. Іван Михейович Первушин показав, що числа й також не є простими. (Зазаначимо, що число має 2525223 цифри. При відтворенні такого числа знадобився б рядок довжиною в 5 км або книга об'ємом 1000 сторінок).

Теорема 2. (Пепін, 1877).

Числа при є простими в тому і тільки в тому випадку, коли виконується умова

Доведення. Оскільки єдиним простим дільником число є 2 , то достатньо перевірити умову теореми Люка при . Покажемо, що як число можна взяти число 3, тобто достатньо перевірити умову Використовуючи формулу Ейлера для обчислення значень квадратичних лишків і квадратичний закон взаємності Гаусса отримуємо, що при простому має бути

Тепер зазаначимо, що , і тому умова рівносильна рівності Теорема доведена.

Теорема Люка послужила відправним пунктом для побудови цілої групи тестів, що дозволяють перевіряти простоту числа. Багато хто з них отримали назву - методів, тому що припускають знання повної або часткової факторизації числа .

Ще одне узагальнення теореми Люка засновано на розгляді інших груп замість мультиплікативної групи . Фактично, доказ простоти числа в теоремі Люка засновано на вивченні властивостей групи : якщо будь-яким чином вдається встановити, що її порядок дорівнює , то число – просте.

Дана ідея лежить в основі таких методів, як метод еліптичних кривих і метод числового поля.

Теорема Поклінгтона.

В 1914 р., Х. Поклінгтоном була доведена наступна теорема.

Теорема 3. (Поклінгтон).Нехай , де – просте, що не є дільником . Якщо існує ціле таке, що й , то кожен простий дільник числа має вигляд при якомусь .

Доведення. Нехай – простий дільник числа . Тоді з умови теореми
випливає, що й . Звідси отримуємо, що порядок елемента за модулем задовольняє умови: і не ділить . Тому . У силу малої теореми Ферма . Отже, . Теорему доведено.

Застосовуючи дану теорему для всіх дільників числа , отримуємо наступну теорему, що є узагальненням теореми Люка на випадок .

Теорема 4. Нехай , де . Якщо для будь-якого простого дільника числа існує ціле таке, що й , тоді число -просте.

Доведення. Нехай – складене й – нетривіальний простий дільник числа . Зазначимо, що завжди можна вибрати дільник так, що . Тоді з умови теореми випливає, що для всіх простих дільників числа існує ціле таке, що й .

Міркуючи аналогічно зауваженню до теореми Люка, отримуємо, що має знайтися елемент, який має порядок рівний за модулем . У силу малої теореми Ферма . Отже, справедливий ланцюжок нерівностей

.

Але , протиріччя.

Дана теорема показує, що якщо вдалося частково факторизувати число , причому факторизована частина задовольняє умову , то – просте.

Перш ніж переходити до подальшого, приведемо дві класичні частки випадку даної теореми.

Теорема 5. (Прот, 1878). Нехай , де .

Якщо існує число , для якого виконується умова

,

то – просте.

Теорема 6. (Прот, 1878). Нехай , де , і 3 не ділить . Тоді просте в тому і тільки в тому випадку, коли виконується умова

.

Доведення. У силу теореми Поклінгтона достатньо перевірити умову при й . Оскільки за умовою , то умова рівносильна виконанню рівності

Зазаначимо, що якщо в теоремі Поклінгтона замінити рівність на більш слабку умову , то можна отримати
наступний результат.

Лема 1. Нехай , де – просте число, що не є дільником . Якщо існує ціле таке, що й , то знайдеться простий дільник числа виду при якомусь .

Доведення. Нехай . Тоді за умовою теореми в силу китайської теореми про залишки випливає, що існує таке , що й . Звідси отримуємо, що порядок елемента за модулем задовольняє умови: і не ділить . Тому .

У силу леми Гаусса про циклічність мультиплікативної групи кільця одержуємо . Зазначимо, що числа й взаємно прості як дільники сусідніх чисел. Тому . Отже, .

Хоча цей результат слабкіше, ніж теорема Поклінгтона, даний підхід, як показав Н. Дієметко в 1988 р., також може бути ефективно використаний для доведення простоти чисел.

Теорема (Дієметко). Нехай , де – просте, – парне й Якщо існує ціле таке, що й , то – просте.

Доведення. Нехай – не просте й . Тоді за лемою отримуємо, що існує таке , що .

Позначимо Тоді , де й . Звідси . Отже, , де – не може дорівнювати 0, інакше – просте, або 1, тому що – непарне. Аналогічно, . Таким чином,

.

Протиріччя. Теорему доведено.

Зазаначимо, що за умовою теореми числа й можуть бути не взаємно прості. Ця теорема лежить в основі алгоритму генерації простих чисел у вітчизняному стандарті на цифровий підпис Р 34.10-94.

У ньому як обираються не дуже високі степені числа 2, а перебуває перебором. (З 1 липня 2002 р. цей стандарт був замінений на новий Р 34.10-2001).

Метод Маурера

В 1995 р. У. Маурер опублікував швидкий алгоритм генерації доведених простих чисел, близьких до випадкового. У його основі лежить посилення теореми Поклінгтона на випадок, коли факторизована частина числа задовольняє нерівності . Крім того, йому вдалося оцінити ймовірність успіху при випадковому пошуку числа в умові теореми Поклінгтона.

Наступна лема є спеціальним випадком теореми Поклінгтона.

Лема 2. Нехай Якщо існує ціле таке, що для будь-якого простого дільника числа виконані умови і , те кожен простий дільник числа має вигляд при деякому цілому Якщо, крім того, або – парне й , то – просте.

Доведення. Нехай – складене й – нетривіальний простий дільник числа . Тоді за умови теореми випливає, що й . Міркуючи аналогічно зауваженню до теореми Люка, отримуємо, що має знайтися елемент, який має порядок рівний за модулем . У силу малої теореми Ферма .

Для доведення другого твердження, припустимо, що . Тоді .
Якщо , то Якщо - непарне й , то й

просте число поклінгтон мауер люк

Характеристики

Тип файла
Документ
Размер
2,98 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее