85765 (597825), страница 2
Текст из файла (страница 2)
В теорії похибок вимірів для визначення дисперсії функції застосовують правило:
1. Диференціюють функцію
2. В отриманій формулі зводять до квадрату кожен член разом із своїм знаком
3. В формулі замінюють
…
тобто
Визначення ваги функції
Вага функції є мірою відносної точності і її можна збільшувати або зменшувати в певну кількість разів .
Розглянемо дисперсію функції для незалежних аргументів.
Відомо, що . Тоді можна замінити
отримаємо:
Це і є формула оберненої ваги функції, після обчислення якої можна перейти до ваги функції. Коефіцієнт С вибирають так, щоб значення ваги Ру було близьке до одиниці для зручності її використання.
Для визначення ваги функції в теорії похибок вимірів користуються правилом:
1. Визначають дисперсію функції.
2. Дисперсії всіх перемінних
..., і т. д. замінюють на обернені ваги відповідно
, …, і т. д.
Зазначимо, що вага однієї функції не дає уявлення про точність функції. Її можна використати у порівнянні з вагами функції однорідних фізичних величин. Вага функцій визначає відносно більшу або меншу точність однієї функції порівняно з іншою.
Вага системи функції
Якщо маємо систему функцій
_ _ _ _ _ _ _ _ _ _ _
Вага системи функції для незалежних аргументів визначається за формулою:
a11 a12 … ain
a21 a22 … a2n
A = … … …
am1 am2 … amn
…
де Кх – кореляційна матриця аргументів хі;
- дисперсія одиниці ваги;
- обернені ваги аргументів.
Після перемноження матриць отримаємо:
К12 К13... К1m
= K21
К23... К2m
… … … …
Km1 Km2 Km3
де - обернені ваги функції уі;
Kij – кореляційні моменти, які характеризують зв’язок між вагами функцій.
Коєфіцієнти кореляції між функціями визначаються за формулою:
РОЗДІЛ 2. ВИПАДКОВІ ВЕЛИЧИНИ, ЇХ ХАРАКТЕРИСТИКИ І ЗАКОНИ РОЗПОДІЛУ ЙМОВІРНОСТЕЙ
1. Випадкові величини
Випадкові події якісно характеризують випадковий результат проведеного досліду. Разом з тим випадковий результат можна характеризувати і кількісно.
Випадковою величиною називають таку величину, яка в результаті досліду може набути будь-якого довільного значення до того заздалегідь невідомо якого саме.
Поняття випадкової величини є одним із важливих понять теорії ймовірностей. Позначимо випадкові величини великими буквами латинського алфавіту - X, У, ..., а їх можливі значення позначимо відповідними малими буквами х,у,... .
Випадкові величини в практичній діяльності можуть бути дискретні та неперервні.
Дискретною (перервною) випадковою величиною називають таку величину, яка може приймати окремі кінцеві значення або їх нескінченну кількість (безліч, елементи якої можуть бути занумеровані).
Приклади дискретних випадкових величин:
-
Кількість правильних вимірів кута при 10 прийомах.
-
Число бракованих приладів в партії із n штук.
Неперервною випадковою величиною називають таку величину, можливі значення якої повністю заповняють деякий інтервал (кінцевий або нескінченний) числової осі. Таким чином і число можливих значень неперервної випадкової величини буде нескінченним.
Приклади неперервних випадкових величин:
1. Помилка виміру довжини лінії, чи величини кута.
2. Графік рівня води в річці, отриманий за допомогою реєстраційного автоматичного приладу.
Цілком зрозуміло, що при випробуваннях окремі значення випадкових величин помітно відрізняються одне від одного і на перший погляд вони не здаються неперервними. Але треба усвідомити, що ці значення не можна перечислити заздалегідь і мова йде про ті значення, які можна прийняти в результаті досліду. Появу того чи іншого значення не можна заздалегідь задати точно, але можна шукати ймовірності того чи іншого значення випадкової величини. Це означає, що випадкова величина володіє ймовірністю її появи. Тому в практичній діяльності зручніше користуватися дискретними випадковими величинами ніж неперервними випадковими величинами.
2. Закон розподілу ймовірностей випадкових величин
В результаті досліду неперервна випадкова величина X приймає одне із своїх можливих значень. Тобто з'явиться одна подія із повної групи несумісних подій: X = х1, X = Х2, ..., X — хn. Кожне із цих значень володіє ймовірністю появи, або
,
, ...
Так як всі можливі події утворюють повну групу несумісних подій, то сума ймовірностей всіх можливих значень випадкової величини X дорівнює одиниці
Цілком зрозуміло, що випадкова величина буде повністю визначена, якщо вказати ймовірність кожної із подій.
Законом розподілу випадкової величини називають всяке співвідношення, що встановлює зв'язок між можливими значеннями випадкової величини і відповідними ймовірностями.
Закон розподілу дискретної випадкової величини задають:
1) аналітично;
2) чисельно у вигляді таблиці;
3) графічно.
Аналітично закон розподілу для дискретних випадкових величин задають за допомогою формул розподілу ймовірностей при повторних випробуваннях. Ймовірність появи k-ої події при n - випробуваннях розраховують за формулою.
Найбільш просто закон розподілу дискретної випадкової величини X відображають у вигляді таблиці, яку називають рядом розподілу випадкової величини.
Наочно ряд розподілу відображають графічно. Для цього можливі значення випадкової величини Х1 відкладають по осі абсцис, а по осі ординат - відповідні їм імовірності Р. Отримані вершини ординат з'єднують відрізками прямих ліній. Такий рисунок називають багатокутником розподілу.
Слід пам'ятати, що з'єднання вершин ординат проводиться тільки для більш наочного відображення. При цьому, в відрізках поміж Х1 і Х2, Х2 і X3 і далі, випадкова величина х немає значення і ймовірності її на цих відрізках дорівнюють нулю. Другою властивістю багатокутника розподілу є те, що сума ймовірностей всіх можливих значень випадкової величини (сума ординат) завжди дорівнює одиниці. Це виходить з того, що всі можливі значення випадкової величини X утворюють повну групу подій, сума ймовірностей яких дорівнює одиниці.
Немає сумніву, що ряд розподілу чи багатокутник розподілу можна подати для дискретної випадкової величини з кінцевим числом можливих значень. Однак ряд розподілу не можна побудувати для неперервної випадкової величини, що має незчисленну безліч можливих значень, які суцільно заповнюють деякий відрізок. Перелічити таку безліч значень випадкової величини практично неможливо. Проте, треба мати таку характеристику розподілу ймовірностей, яка б відображала як дискретні, так і неперервні випадкові величини. Нею є функція розподілу.
Функцією розподілу або інтегральним законом розподілу випадкової величини X називається задання ймовірності події виконання нерівності X < х, де х - деяка поточна змінна, її розглядають як функцію аргументу х і визначають за формулою
F(x) = P(X Функцію розподілу F(х) називають інтегральною функцією розподілу або інтегральним законом розподілу. Вона має досить просту геометричну інтерпретацію. Розглянемо випадкову величину, як випадкову точку X осі ОХ, що в результаті випробування може прийняти те чи інше положення. Тоді функція розподілу F(х) є ймовірністю того, що випадкова точка X в результаті випробування попаде зліва від точки х. Функція дискретної випадкової величини X, що може приймати значення Х1,Х2, ... , xn буде мати вигляд При цьому додавання ймовірностей розповсюджується на всі можливі значення випадкової-величини, які за своєю величиною менші аргументу х. Це означає, що функція розподілу дискретної випадкової величини X розривна і зростає стрибками при переході через точки можливих її значень Х1, Х2, ... , хn. Оскільки функція розподілу дискретної випадкової величини виглядає як сходинкова ламана лінія, тому її називають сходинковим графіком. Якщо випадкова величина неперервна, то вона має ймовірність в кожній точці осі х. Згідно з формулою функція розподілу буде зростати поступово, тому що можливі значення випадкової величини неперервно заповнюють будь-який інтервал на осі х. Тоді графік виглядатиме як монотонне зростаюча функція розподілу F(х) на інтервалі від а до b. Функція розподілу має властивості: 1. Функція розподілу F(х) є зростаючою і міститься між нулем та одиницею 0 < F(х) < 1. Це випливає з того, що функція F(х) визначається як імовірність випадкової події X < х. 2. Ймовірність виникнення випадкової величини в інтервалі від Визначимо подію А того, що випадкова величина х < Подія С відображає те, що P (B) = P(A) + P(C) Якщо функція в точці З цього робимо висновок, що ймовірність випадкової величини в точці для неперервної функції дорівнює нулю. Це явище називають парадоксом теорії ймовірностей. Проте нульова ймовірність події лише зазначає, що частота цієї події невпинно спадає при збільшенні числа дослідів, однак це не означає, що ця подія неможлива. 3. Функція розподілу випадкової величини є зростаючою функцією, тобто при Маємо Так як імовірність будь-якої події є додатне число, то 3. На мінус нескінченності функція розподілу дорівнює нулю, а на плюс нескінченності - одиниці, тобто Це цілком вірно, так як при необмеженому переміщенні точки х вліво, попадання випадкової точки X лівіше х максимально стає неможливою подією і За допомогою функції розподілу можна знайти ймовірність випадкової величини в будь-якому інтервалі або в кожній точці можливих значень для дискретної випадкової величини. Тому функція розподілу однозначно визначає закон розподілу випадкової величини. Більш наочно характер розподілу неперервної випадкової величини в невеликих інтервалах числової осі х дає функція щільності розподілу ймовірностей або диференціальний закон розподілу. Якщо маємо функцію розподілу F(х) випадкової величини X, то ймовірність попадання її на елементарну ділянку (х, х + Знайдемо середню ймовірність, що припадає на одиницю довжини ділянки Функцією щільності розподілу випадкової величини в точці х є граничне відношення ймовірності попадання її на елементарну ділянку від х до х + Її позначають Функція щільності розподілу має властивості:
до
дорівнює різниці значень функції на кінцях інтервалу
та подію В для випадку х <
.
< х <
. В цьому випадку подія В буде складатися із суми двох несумісних подій А і С, тобто В = А + С. Згідно з теоремою додавання ймовірностей маємо
неперервна, то граничне значення дорівнює нулю. При розриві функції в точці (X її граничне значення буде дорівнювати значенню стрибка функції F (х).
>
= 0. В той же час при необмеженому переміщенні точки х вправо попадання випадкової точки X зліва від х практично стає достовірною подією, тоді
= 1.
х) згідно з попередньою формулою буде:
х
х до довжини цієї ділянки
х, коли
х наближається до нуля.
або (х). Зміст функції щільності розподілу
(х) полягає в тому, що вона вказує, як часто з'являється випадкова величина X навколо точки х при повторенні дослідів.