63563 (597597), страница 4
Текст из файла (страница 4)
Как видим, сопротивление Z имеет действительную часть
и мнимую часть индуктивного характера
Учитывая (1.20), получим, что активное сопротивление проводника переменному току
(1.22)
равно сопротивлению проводника постоянному току, если высота проводника h=hск.
Как следует из (1.22), при изготовлении проводников для переменного тока толщину металлизации нецелесообразно устанавливать существенно больше hск. На практике толщину металлизации выбирают с запасом в пределах h=(2...3)hск
2. Радиоволны в линиях передачи
Для передачи энергии электромагнитного поля от передатчика к передающей антенне, от приемной антенны к приемнику, от каскада к каскаду в радиосистеме применяют линии передачи. Иначе их называют фидерные линии от английского слова feed– питать. Например, фидерная линия, ведущая от генератора электромагнитных колебаний к антенне – это линия, питающая антенну электромагнитной энергией.
2.1 Типы передающих линий
В современных радиосистемах используют, в основном, четыре типа передающих линий – двухпроводную, коаксиальную, микрополосковую и волноводную – рис.2.1.
Рис.2.1. Типы линий передачи
а) двухпроводная; б) коаксиальная;
в) микрополосковая; г) волновод – прямоугольный и круглый.
Простейшей линией является двухпроводная – это два параллельных металлических проводника. Если один провод расположен внутри другого, получается коаксиальная линия, или коаксиальный кабель. В каскадах СВЧ применяют микрополосковую линию (МПЛ), а также волноводы – трубы прямоугольного и круглого сечения. МПЛ – это два параллельных проводника - узкий и широкий, разделенных диэлектрической подложкой.
В линиях передачи электромагнитное поле существует в пространстве около проводников, а сами проводники подобны рельсам, задающим направление движения энергии поля.
Пространство между проводниками и линией может быть ничем не заполненным. В этом случае линии являются воздушными. Если между проводниками имеется диэлектрик, то это линия с диэлектрическим заземлением.
Для того, чтобы определить структуру электромагнитного поля в линии передачи, рассмотрим модель, справедливую для всех типов линий – это две параллельные бесконечные плоскости – рис.2.2
Р
Рис.2.2. Модель передающей линии
ешим уравнения Максвелла для линии передачи, образованной двумя параллельными плоскостями, при следующих допущениях:
1) плоскости идеально проводящие, т.е. удельная электропроводность материала плоскости ;
2) диэлектрик между плоскостями идеальный, т.е. его удельная электропроводность ;
ищем решение в виде волн, распространяющихся вдоль оси z;
вдоль оси y плоскости бесконечны и электромагнитное поле вдоль этой оси не меняется;
линия возбуждается источником монохроматического поля.
При сделанных допущениях 1-е и 2-е уравнения Максвелла для комплексных амплитуд имеют следующий вид:
Раскрывая их и учитывая, что производные составляющих поля по оси y равны 0, получим 2 системы уравнений – первая относительно переменных ,
,
,
; (2.1)
,
вторая - относительно переменных ,
,
(2.2)
Система уравнений (2.1) описывает поля, у которых вектор напряженности магнитного поля перпендикулярен направлению распространения z, в то время, как вектор
имеет проекцию на ось z. Такие поля называют поперечно магнитными, или поля TM – типа (Transverse Magnetic Waves). Иначе их называют полями E – типа.
Система (2.2) относится к поперечно – электрическим полям (Transverse Electrical Waves), т.е. полям ТЕ – типа (или полям H), поскольку здесь вектор напряженности электрического поля перпендикулярен направлению распространения z - рис. 2.3. Рассмотрим структуру полей различных типов более подробно.
Рис.2.3. Возможные типы полей в передающих линиях:
а) ТН - волны; б) ТЕ - волны
2.2 Поперечно- магнитные волны
Из системы (2.1) исключим и
и составим одно уравнение относительно
(2.3)
Получим уравнение эллиптического типа, для однозначного решения которого требуется задание граничных параметров [2].
Рассматриваемая линия передачи ограничена плоскостями, расположенными при следующих значениях координаты x: x = 0 и x = a.
На границе с проводником вектор расположен таким образом, что может быть представлен суммой нормальной Eн и касательной Eкас составляющих-рис.2.4 диэлектрик.
Р ис. 2.4. Электрическое поле на границе диэлектрик-проводник.
Наличие касательной составляющей электрического поля вызывает появление электрического тока плотностью
,
где - удельная электропроводность проводника.
Поскольку плотность тока конечна, а проводимость идеального проводника , то нужно выполнение условия
при x = 0, x = a. В соответствии со вторым – уравнением системы (2.1) граничные условия для уравнения (2.3) запишем следующим образом:
, при x = 0, x = a.(2.4)
В приложении 5 получено решение уравнения (2.3) с граничными условиями (2.4). При отсутствии отражений оно может быть записано в следующем общем виде:
где - амплитуда напряженности магнитного поля прямой волны при z = 0 (m = 0, 1, 2, 3, …..),
,
.
При выполнении условия имеем
,
где
,
или
, (2.5)
критическая частота
. (2.6)
В результате поле принимает вид бегущей волны
,
, (2.7)
,
где
.
Таким образом, в линиях передачи возможно существование бесконечного числа поперечно – магнитных волн типа Em, отличающихся числом m, которые распространяются вдоль оси z, если частота колебаний источника f > fкр.
Поперечные электромагнитные волны
Если в выражениях (2.7) и (2.6) установить m = 0, то получим поле, имеющее две взаимно перпендикулярные составляющие и
. Такое поле называется поперечно электромагнитным, или поле ТЕМ – типа (Transverse Electro-Magnetic).
ТЕМ – волны существуют при любых частотах f, т.е fкр =0 и имеют такую же структуру, как поле в свободном пространстве.
2.3 Поперечно – электрические волны
Решая уравнения системы (2.2), получим выражение для составляющих поля поперечно электрического типа (ТЕ – или H – волны):
,
, (2.8)
,
где - амплитуда колебаний напряженности электрического поля прямой волны при z=0,
волновое сопротивление среды. Постоянная распространения определяется выражением (2.5), критическая частота fкр - формулой (2.6).
Как видно из (2.8), существует бесконечное число типов поперечно - электрических волн Hm, соответствующих разным m = 1,2,3,… При m = 0, все составляющие поля равны 0.
Так же как и поперечно – магнитные поля, H – волны распространяются вдоль оси z, если частота колебаний источника превышает критическую частоту fкр, определяемую выражением (2.6).
2.4 Фазовая и групповая скорости волн. Длина волны в линии
Фазовая скорость движения волн типа Em и Hm, т.е скорость распространения гармонических колебаний одной фазы, определяется выражением
Подставив сюда выражение (2.5) и получим
, (2.9)
где
скорость света в среде.
Как видим, фазовая скорость ТМ - и ТЕ – волн всегда больше скорости света. Следует отметить, что фазовая скорость E – и H – волн зависит от частоты колебаний f. Зависимость от f, называется дисперсией, а среда, в которой наблюдается дисперсия – дисперсионной. Таким образом, линии передачи, в которых распространяются поперечно – магнитные или поперечно – электрические волны являются дисперсными.
Помимо фазовой, для характеристики движения радиоволн применяют понятие групповой скорости . Групповая скорость введена для оценки движения радиосигнала.
Радиосигналом называются высокочастотные колебания, модулированные низкочастотными колебаниями, которые содержат информацию. Групповая скорость – это скорость перемещения информации. Одновременно, групповая скорость является скоростью перемещения энергии.
При движении радиосигнала имеем не монохроматическую волну, а волну, содержащую спектр частот. Если радиосигнал узкополосный, т.е. ширина спектра много меньше средней частоты ω, то групповая скорость определяется выражением [1]:
(2.10)
Выражение (2.10) можно применить и к линиям передачи, определяя тем самым, скорость перемещения энергии.
Если в линии распространяется ТЕМ – волна, для которой , то из (2.10) следует, что
,
т.е. равна скорости света v в однородной среде.
При распространении волн Em и Hm в формулу (2.10), вместо β, следует подставить фазовый множитель βm, определяемый выражением (2.5). В результате получим
(2.11)
Как видим, групповая скорость меньше скорости света в среде v. Объединяя выражения (2.9) и (2.11), запишем
(2.12)
Длина волны в линии
Как известно, длина волны в линии – это расстояние, проходимое волной за период колебаний T
,
где v определяется выражением (2.9).