63563 (597597), страница 4

Файл №597597 63563 (Основы радиосвязи) 4 страница63563 (597597) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Как видим, сопротивление Z имеет действительную часть

и мнимую часть индуктивного характера

Учитывая (1.20), получим, что активное сопротивление проводника переменному току

(1.22)

равно сопротивлению проводника постоянному току, если высота проводника h=hск.

Как следует из (1.22), при изготовлении проводников для переменного тока толщину металлизации нецелесообразно устанавливать существенно больше hск. На практике толщину металлизации выбирают с запасом в пределах h=(2...3)hск

2. Радиоволны в линиях передачи

Для передачи энергии электромагнитного поля от передатчика к передающей антенне, от приемной антенны к приемнику, от каскада к каскаду в радиосистеме применяют линии передачи. Иначе их называют фидерные линии от английского слова feed– питать. Например, фидерная линия, ведущая от генератора электромагнитных колебаний к антенне – это линия, питающая антенну электромагнитной энергией.

2.1 Типы передающих линий

В современных радиосистемах используют, в основном, четыре типа передающих линий – двухпроводную, коаксиальную, микрополосковую и волноводную – рис.2.1.


Рис.2.1. Типы линий передачи

а) двухпроводная; б) коаксиальная;

в) микрополосковая; г) волновод – прямоугольный и круглый.



Простейшей линией является двухпроводная – это два параллельных металлических проводника. Если один провод расположен внутри другого, получается коаксиальная линия, или коаксиальный кабель. В каскадах СВЧ применяют микрополосковую линию (МПЛ), а также волноводы – трубы прямоугольного и круглого сечения. МПЛ – это два параллельных проводника - узкий и широкий, разделенных диэлектрической подложкой.

В линиях передачи электромагнитное поле существует в пространстве около проводников, а сами проводники подобны рельсам, задающим направление движения энергии поля.

Пространство между проводниками и линией может быть ничем не заполненным. В этом случае линии являются воздушными. Если между проводниками имеется диэлектрик, то это линия с диэлектрическим заземлением.

Для того, чтобы определить структуру электромагнитного поля в линии передачи, рассмотрим модель, справедливую для всех типов линий – это две параллельные бесконечные плоскости – рис.2.2


Р

Рис.2.2. Модель передающей линии


ешим уравнения Максвелла для линии передачи, образованной двумя параллельными плоскостями, при следующих допущениях:

1) плоскости идеально проводящие, т.е. удельная электропроводность материала плоскости ;

2) диэлектрик между плоскостями идеальный, т.е. его удельная электропроводность ;

ищем решение в виде волн, распространяющихся вдоль оси z;

вдоль оси y плоскости бесконечны и электромагнитное поле вдоль этой оси не меняется;

линия возбуждается источником монохроматического поля.

При сделанных допущениях 1-е и 2-е уравнения Максвелла для комплексных амплитуд имеют следующий вид:

Раскрывая их и учитывая, что производные составляющих поля по оси y равны 0, получим 2 системы уравнений – первая относительно переменных , ,

,

; (2.1)

,

вторая - относительно переменных , ,

(2.2)

Система уравнений (2.1) описывает поля, у которых вектор напряженности магнитного поля перпендикулярен направлению распространения z, в то время, как вектор имеет проекцию на ось z. Такие поля называют поперечно магнитными, или поля TM – типа (Transverse Magnetic Waves). Иначе их называют полями E – типа.

Система (2.2) относится к поперечно – электрическим полям (Transverse Electrical Waves), т.е. полям ТЕ – типа (или полям H), поскольку здесь вектор напряженности электрического поля перпендикулярен направлению распространения z - рис. 2.3. Рассмотрим структуру полей различных типов более подробно.


Рис.2.3. Возможные типы полей в передающих линиях:

а) ТН - волны; б) ТЕ - волны



2.2 Поперечно- магнитные волны

Из системы (2.1) исключим и и составим одно уравнение относительно

(2.3)

Получим уравнение эллиптического типа, для однозначного решения которого требуется задание граничных параметров [2].

Рассматриваемая линия передачи ограничена плоскостями, расположенными при следующих значениях координаты x: x = 0 и x = a.

На границе с проводником вектор расположен таким образом, что может быть представлен суммой нормальной Eн и касательной Eкас составляющих-рис.2.4 диэлектрик.

Р ис. 2.4. Электрическое поле на границе диэлектрик-проводник.

Наличие касательной составляющей электрического поля вызывает появление электрического тока плотностью

,

где - удельная электропроводность проводника.

Поскольку плотность тока конечна, а проводимость идеального проводника , то нужно выполнение условия при x = 0, x = a. В соответствии со вторым – уравнением системы (2.1) граничные условия для уравнения (2.3) запишем следующим образом:

, при x = 0, x = a.(2.4)

В приложении 5 получено решение уравнения (2.3) с граничными условиями (2.4). При отсутствии отражений оно может быть записано в следующем общем виде:

где - амплитуда напряженности магнитного поля прямой волны при z = 0 (m = 0, 1, 2, 3, …..),

,

.

При выполнении условия имеем

,

где

,

или

, (2.5)

критическая частота

. (2.6)

В результате поле принимает вид бегущей волны

,

, (2.7)

,

где

.

Таким образом, в линиях передачи возможно существование бесконечного числа поперечно – магнитных волн типа Em, отличающихся числом m, которые распространяются вдоль оси z, если частота колебаний источника f > fкр.

Поперечные электромагнитные волны

Если в выражениях (2.7) и (2.6) установить m = 0, то получим поле, имеющее две взаимно перпендикулярные составляющие и . Такое поле называется поперечно электромагнитным, или поле ТЕМ – типа (Transverse Electro-Magnetic).

ТЕМ – волны существуют при любых частотах f, т.е fкр =0 и имеют такую же структуру, как поле в свободном пространстве.

2.3 Поперечно – электрические волны

Решая уравнения системы (2.2), получим выражение для составляющих поля поперечно электрического типа (ТЕ – или H – волны):

,

, (2.8)

,

где - амплитуда колебаний напряженности электрического поля прямой волны при z=0,

волновое сопротивление среды. Постоянная распространения определяется выражением (2.5), критическая частота fкр - формулой (2.6).

Как видно из (2.8), существует бесконечное число типов поперечно - электрических волн Hm, соответствующих разным m = 1,2,3,… При m = 0, все составляющие поля равны 0.

Так же как и поперечно – магнитные поля, H – волны распространяются вдоль оси z, если частота колебаний источника превышает критическую частоту fкр, определяемую выражением (2.6).

2.4 Фазовая и групповая скорости волн. Длина волны в линии

Фазовая скорость движения волн типа Em и Hm, т.е скорость распространения гармонических колебаний одной фазы, определяется выражением

Подставив сюда выражение (2.5) и получим

, (2.9)

где

скорость света в среде.

Как видим, фазовая скорость ТМ - и ТЕ – волн всегда больше скорости света. Следует отметить, что фазовая скорость E – и H – волн зависит от частоты колебаний f. Зависимость от f, называется дисперсией, а среда, в которой наблюдается дисперсия – дисперсионной. Таким образом, линии передачи, в которых распространяются поперечно – магнитные или поперечно – электрические волны являются дисперсными.

Помимо фазовой, для характеристики движения радиоволн применяют понятие групповой скорости . Групповая скорость введена для оценки движения радиосигнала.

Радиосигналом называются высокочастотные колебания, модулированные низкочастотными колебаниями, которые содержат информацию. Групповая скорость – это скорость перемещения информации. Одновременно, групповая скорость является скоростью перемещения энергии.

При движении радиосигнала имеем не монохроматическую волну, а волну, содержащую спектр частот. Если радиосигнал узкополосный, т.е. ширина спектра много меньше средней частоты ω, то групповая скорость определяется выражением [1]:

(2.10)

Выражение (2.10) можно применить и к линиям передачи, определяя тем самым, скорость перемещения энергии.

Если в линии распространяется ТЕМ – волна, для которой , то из (2.10) следует, что

,

т.е. равна скорости света v в однородной среде.

При распространении волн Em и Hm в формулу (2.10), вместо β, следует подставить фазовый множитель βm, определяемый выражением (2.5). В результате получим

(2.11)

Как видим, групповая скорость меньше скорости света в среде v. Объединяя выражения (2.9) и (2.11), запишем

(2.12)

Длина волны в линии

Как известно, длина волны в линии – это расстояние, проходимое волной за период колебаний T

,

где v определяется выражением (2.9).

Характеристики

Тип файла
Документ
Размер
15,59 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее