150857 (594603), страница 7

Файл №594603 150857 (Рентгеноструктурний аналіз молибдену) 7 страница150857 (594603) страница 72016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Рентгенівське випромінювання при розсіянні речовиною частково поляризується, унаслідок чого ослабляється його інтенсивність. Разом з тим необхідно знайти інтенсивність, яка спостерігалася б за відсутності поляризації.

Якщо крива інтенсивності одержана у фільтрованому випромінюванні, то поправка на поляризацію обчислюється по формулі

P(θ) = (1 + cos2 2θ)/2 (129)

де 2θ — кут розсіювання.

Якщо ж первинний потік рентгенівського випромінювання монохроматизується при відбиванні від монокристала, то формула для обчислення поправки на поляризацію має вигляд

P(θ) = (1 + cos2 2θ cos2 2φ)/2 (130)

де φ — кут відбивання від відповідної площини монокристала. Поляризаційний чинник для нейтронів і електронів при їх розсіянні рівний одиниці.

При взаємодії рентгенівського випромінювання, електронів і нейтронів з речовиною частина їх енергії перетворюється на різні види внутрішньої енергії речовини і в енергію вторинного випромінювання. Це приводить до часткового поглинання падаючого на зразок випромінювання. Тому інтенсивність розсіювання не може бути правильно визначена без внесення поправки на поглинання. Ця поправка залежить від форми зразка і кута розсіювання. У разі плоского зразка при зйомці на проходження проміння ця поправка обчислюється по формулі

(131)

де l — товщина зразка; μ — лінійний коефіцієнт поглинання; x = (1—cos2θ)/cos(2θ)

При зйомці на відбивання від плоскої поверхні зразка поправка на поглинання задається формулою

(132)

де α — кут, під яким випромінювання падає на поверхню рідини.

Якщо під час зйомки на θ—θ -дифрактометрах зберігається постійність кутів (α = θ), то з (132) витікає, що А не залежить від кута розсіювання А = 1/(4μ).

У разі циліндрового зразка поправка на поглинання може бути розрахована по формулі

(133)

де R0 — радіус зразка; an — коефіцієнт, залежний від кута розсіювання.

Значення A(θ) протабульовано для різних μR0. Знаючи з умов експерименту μR0 знаходимо за табличними даними A(θ). Внесення вказаних поправок можливо зробити при діленні експериментальних значень інтенсивності на добуток чинників поляризації і поглинання.

Нормування кривих інтенсивності

У рівняннях для інтенсивності розсіювання величини I(S) і F2(S) виражені в електронних одиницях. З експерименту ми одержуємо інтенсивність у відносних одиницях. Тому необхідно нормувати експериментальні значення інтенсивності, тобто приводити їх до електронних одиниць:

Iнорм(S) = k Iотн(S) (134)

Нормуючий множник k може бути знайдений декількома способами. Один з них заснований на тому, що при великих кутах розсіювання крива інтенсивності перестає осцилювати щодо кривої незалежного розсіювання. Це слідує, зокрема, з рівняння

(135)

При S→ ∞ функція sinSR/(SR) → 0, а I(S) → NF2(S). Тому для тих значень S, при яких міжатомні інтерференційні ефекти виражені дуже слабо, експериментальну криву інтенсивності, виправлену на поляризацію і поглинання, можна сумістити з кривою незалежного розсіювання, розрахованої за табличними даними. Оскільки заміряна інтенсивність складається з когерентної і некогерентної частин, нормуючий множник слід обчислювати по формулах:

(136)

— для атомарних рідин,

(137)

— для молекулярних рідин.

Якщо всі експериментальні значення інтенсивності помножити на нормуючий множник, ми одержимо криву розсіювання в електронних одиницях. Після нормування I(S) з неї слід відняти інтенсивність некогерентного розсіювання.

Інший спосіб нормування експериментальних кривих розсіювання заснований на законі збереження інтенсивності, який можна сформулювати так: інтенсивність розсіювання не залежить від того, як розташовані атоми один щодо одного, чи утворюють вони кристал, молекули рідини або газу. Інтерференція між хвилями, розсіяними даним числом атомів, приводить лише до перерозподілу інтенсивності, посиленню в одних напрямах і ослабленню в інших, не змінюючи сумарної її величини. Тому якщо нормовані експериментальні значення інтенсивності проінтегрувати по всіх S, то цей інтеграл буде рівний інтегралу по значеннях інтенсивності, що дається ізольованими атомами:

(138)

Експериментальна інтенсивність складається з когерентної і некогерентної частин. Тому рівність (138) слід переписати у вигляді

(139)

звідки

(140)

Згідно цій формулі, нормуючий множник визначається як відношення площі під кривою сумарного незалежного розсіювання до площі під експериментальною кривою розсіювання. Критерієм точності нормування може служити рівність

(141)

яке виходить з рівняння

(142)

За умови, що для значення R = 0 функція ρ(R) = 0 ,a sin SR/(SR) =1. Средню атомну густину обчислюють по формулі

або (143)

де А — атомна маса, ρ — густина речовини, NA — постійна Авогадро, mH — маса атома водню. Середня електронна густина речовини рівна

(144)

де Zj — число електронів атома.

Необхідно відзначити, що на досвіді криву інтенсивності I(S) можна визначити в обмеженому інтервалі S, а не від 0 до ∞, як це потрібне теорією. Пояснюється це двома причинами: 1) при зйомці на проходження розсіяне під невеликими кутами випромінювання перекривається первинним пучком, а при зйомці на відбивання —краями зразка. Через це не можна визначити хід інтенсивності від 0 до деякого значення S1 Тому доводиться довільно екстраполювати I(S) до нуля; 2) в результаті кінцівки довжини хвилі крива I(S) може бути визначена до значень

S2 < (4π/λ)sinθ. Якщо λ = 1,54 Å, те граничне значення S2=(4π/λ)=8,1 Å-1 і S2 = 18 Å-1 при λ = 0,71 Å. Експерементально вдається знайти осциляції I(S) до значень S2 = 10 — 12 Å-1 залежно від чутливості методу і довжини хвилі використовуваного випромінювання.

Розглянуті способи нормування експериментальних кривих інтенсивності відносяться до рентгенографії. Нормування кривих розсіювання електронів ускладнюється через відсутність функції некогерентного розсіювання. Ослаблення некогерентного фону за допомогою електронних фільтрів не завжди забезпечує необхідну точність визначення структурних параметрів досліджуваних речовин по їх електронограмам.

І. Д. Набітовіч, Я. І. Стецив і Я В. Волощук запропонували новий метод визначення когерентної інтенсивності і інтенсивності фону по експериментальній кривій розсіювання електронів. Розглянемо суть цього методу. Відомо, що експериментально заміряна інтенсивність розсіювання електронів включає некогерентний фон. Отже,

Iэкс(S) = Iк(S) + Iф(S) (145)

Відповідно до закону збереження інтенсивності когерентна частина нормується за допомогою рівності

(146)

Інтегруючи (145) і враховуючи Ik(S), одержимо

(147)

де

(148)

— інтенсивність, яка виходила б в аналогічних умовах від незалежних атомів. За визначенням,

a(S) — 1 = [Iнор(S) — f2(S)]/f2(S) (149)

Враховуючи, що Iнор(S) = kIk(S) і беручи до уваги рівність (145) і (148), знайдемо

a(S) — 1 = k[Iэкс(S)/f2(S) — /f2(S)] (150)

Рівняння для розрахунку функції 4πR2ρ(R) має вигляд

(151)

У ньому невідомими є нормуючий множник k і доданок /f2(S). Як показують дослідження, значення функції розподілу сильно залежать від нормуючого множника k, тому виникає питання, як його визначити. З (147) витікає, що крива Iэкс(S) повинна осцилювати навколо кривої . Отже, крива Iэкс(S)/f2(S) також повинна осцилювати навколо кривої /f2(S). Хід цієї кривої можна визначити графічно. Для цього за експериментальними даними слід побудувати графік функції Iэкс(S)/f2(S) залежно від S. Потім провести криву /f2(S) так, щоб виконувалася умова

(152)

При цьому верхню межу інтеграції бажано брати як можна велику, використовуючи тим самим всі спостережувані інтерференційні ефекти.

Щоб знайти нормуючий множник, потрібно знати інтенсивність когерентного розсіювання і інтенсивність фону. З рівнянь (149) і (150) знаходимо

Ikнор(S) = f2(S){k[Iэкс(S)/f2(S) — /f2(S)] + 1} (153)

Аналогічно, користуючись рівністю (148), визначимо

Iфнор(S) = kIф(S) = f2(S)[k I(S)>/f2(S) — 1] (154)

Теоретичні розрахунки показують, що значення нормуючого множника залежать від верхньої межі інтеграції в рівнянні (151). Межі можливих значень k можуть бути визначені по експериментальній кривій інтенсивності. Як вже відомо, інтенсивність когерентного розсіювання є величиною позитивною, отже,

Ця нерівність показує, що нижня межа параметра 1/k може бути визначена по значенню найглибшого мінімуму на кривій Iэкс(S)/f2(S) тобто

1/kmin = [ /f2(S) — Iэкс(S)/f2(S) ]max (155)

Інтенсивність фону — теж позитивна величина. Тоді

тобто

Верхня межа параметра 1/k визначиться якнайменшим значенням функції /f2(S) ,тобто

(156)

Нерівності (155) і (156) обмежують можливі значення 1/k.

Як нормуючий множник можна узяти середнє значення, обчислене із співвідношення

(157)

На мал. 4.6 як ілюстрація показані криві Iэкс(S)/f2(S) і /f2(S) для знаходження 1/kmin і 1/kmax. Згідно малюнку якнайменше значення /f2(S) = 4,3 при S = 1,5 Å-1, а найбільше значення різниці [ /f2(S) — Iэкс(S)/f2(S) ]max = 2,5 при S =4,0 Å-1. Отже, 1/k = (4,3 + 1,5)/2 = 2,9; k = 0,35. Висловлений спосіб визначення нормуючого множника і інтерференційної функції розсіювання електронів не пов'язаний з громіздкими обчисленнями. Він простий і доступний. На прикладі германію і кремнію було показано, що визначувані цим методом структурні параметри повністю співпадають зданими рентгенографічних досліджень.

Точність визначення структурних параметрів

Як наголошувалося, основними кількісними характеристиками структури рідин є радіальні функції розподілу атомної і електронної густини.

Точність, з якою можуть бути визначені міжатомні відстані і числа найближчих сусідів, зв'язана: а) з наближеним характером рівнянь, що зв'язують структуру речовини з кутовим розподілом інтенсивності розсіювання, обмеженою точністю табличних значень атомних чинників і некогерентного розсіювання, неоднозначністю вибору нормуючого множника; б) з труднощами експериментального характеру (наприклад, обривом кривої інтенсивності при кінцевому значенні S), а також неточностями вимірювання і обліку різних чинників; погрішностями визначення коефіцієнта поглинання, впливом некогерентного фону. Подолання експериментальних труднощів досягається зйомкою в строго монохроматичному випромінюванні, застосуванням сцинтиляційних лічильників для реєстрації розсіяного рентгенівського випромінювання, секторної методики в електронографії. Сучасна апаратура дозволяє вимірювати інтенсивність розсіювання з точністю 2—3%. Вплив обриву кривої інтенсивності на вигляд функції розподілу піддається аналітичному опису. Всесторонній аналіз цього питання був проведений В. Н. Пилиповичем, Р. Хоземаном, Я. І. Стецивом і ін.

Помилкові максимуми радіальних функцій розподілу. Найістотнішою у визначенні структурних параметрів рідин і аморфних тіл є помилка, що виникає через обрив кривої інтенсивності. Вона може привести до виникнення помилкових максимумів радіальної функції розподілу, до зміни положення максимумів, їх ширини і форми. Щоб виробити кількісну оцінку цієї помилки, потрібно знати функцію а(S) для явно відомого розподілу атомів. З цією метою скористаємося рівнянням (135), з якого виходить, що

(158)

Виключаючи нульове розсіювання, одержимо

(159)

Припустимо, що максимуми на кривій розподілу атомної густини мають форму кривих Гауса. Тоді загальна функція може бути представлена у вигляді

(160)

Характеристики

Тип файла
Документ
Размер
12,88 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее