150857 (594603), страница 4

Файл №594603 150857 (Рентгеноструктурний аналіз молибдену) 4 страница150857 (594603) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Щоб написати аналогічні рівняння для випадку розсіювання електронів тією ж речовиною, слідує атомну амплітуду розсіювання рентгенівського випромінювання замінити на атомну амплітуду розсіювання електронів, залишивши решта членів без змін. Якщо при дослідженні застосовуються нейтрони, то рівняння (88) можна представити у вигляді

(89)

де bК — амплітуда когерентного розсіювання нейтронів зв'язаними ядрами, усереднена по станах спинів і ізотопах даного елементу. Застосовуючи до рівнянь (88) і (89) Фурье-перетворення, одержимо:

(90)

(91)

Ці рівняння лежать в основі вивчення структури атомарних рідин і аморфних тіл.

Параметри, визначувані по кривих інтенсивності

Безпосереднім результатом рентгено-, електроно- і нейтронографічних досліджень рідин і аморфних тіл є інтерференційна картина. У разі одноатомних рідин і аморфних тіл вона несе інформацію про ближній порядок в розташуванні атомів. Картина розсіювання молекулярними рідинами і аморфними тілами відображає атомний склад молекул, їх конфігурацію і взаємне розташування. Задача дослідження полягає в тому, щоб по інтерференційній картині відтворити просторову структуру речовини, встановити зв'язок між структурою і фізичними властивостями.

Для опису структури і структурно – чутливих властивостей рідин і аморфних тіл використовується не вся інтенсивність розсіювання, а лише її інтерференційна (структурна) частина

(92)

Числові значення структурного чинника а(S) рівного відношенню спостережуваної інтенсивності когерентного розсіювання до інтенсивності незалежного розсіювання того ж числа атомів. При великих S, а також в тих випадках, коли розподіл атомів хаотичний, функція а(S)= 1. Під час переходу речовини із стану з неврегульованим розташуванням атомів в стан з впорядкованим їх розташуванням відбувається перерозподіл інтенсивності, посилення її в одних напрямах і ослаблення в інших. Функція а(S) осцилює з амплітудою, що поступово зменшується, біля одиниці, залишаючись позитивною при всіх значеннях S (мал. 2.11).

Згідно (92) послідовність максимумів а(S) визначається послідовністю максимумів функції sinSR/(SR). Ця функція має максимуми при значеннях SR, рівних 7,73; 14,06; 20,46; ... Отже,

R1 = 7,73/(S1)max = 14,06/(S2)max = 20,46/(S3)max = … (93)

Звідси видно, що у разі одноатомних рідин і аморфних тіл середня відстань від фіксованого атома до його найближчих сусідів визначається по значенню S, відповідному будь-якому максимуму інтерференційної функції а(S). Це означає, що визначаючим в утворенні картини розсіювання одноатомними рідинами і аморфними речовинами є найкоротша міжатомна відстань R1 що повторюється в різних порядках інтерференції.

Характерний, що значення R1 визначуване по кривій а(S), близько до значення істинної найкоротшої міжатомної відстані, тільки для рідин з щільною упаковкою атомів (зріджені, інертні гази; типові метали). Якщо ж взаємне розташування атомів в рідині не відповідає щільній упаковці (олово, вісмут, германій, кремній), значення R1 обчислене по формулі (93), не співпадає із значенням найкоротшої міжатомної відстані. В цьому випадку експериментальна крива а(S) визначається накладенням ряду кривих, описуваних рівнянням (92).

Співвідношення S1R1 = 7,73, тобто 4πR1sinθ = 7,73λ, аналогічно формулі Вульфа-Брегга 2dsinθ = λ. З цих формул виходить, що

Відношення цих величин дає R1 = 1,23d1. Рівняння Вульфа — Брегга для цього окремого випадку має вигляд

2R1sinθ = 1,23λ (94)

Таким чином, параметр S, відповідний першому максимуму а(S), пов'язаний з найкоротшою міжатомною відстанню R1 рівнянням Вульфа—Брегга, в яке введений поправочний коефіцієнт 1,23. Рівняння (94) і еквівалентну йому формулу R1= 7,73/S1 застосовують у разі молекулярних рідин для оцінки середньої відстані між сусідніми молекулами. При цьому припускають, що перший максимум інтенсивності цілком обумовлюється міжмолекулярним розсіюванням, просторовою конфігурацією молекул і їх упаковкою. Важливо відзначити, що про ступінь ближнього порядку в рідині і твердій аморфній речовині можна судити по ширині і висоті максимумів кривої а(S). Чим більше їх висота, тим менш інтенсивно тепловий рух атомів і тим вищий ступінь їх впорядкованості. Таким чином, маючи експериментальні криві розсіювання, можна по них визначити найкоротшу відстань між атомами і молекулами рідини, з'ясувати характерні особливості розташування найближчих сусідів, тенденції зміни упаковки частинок з температурою. Зв'язок інтерференційної функції із стисливістю. Граничне значення функції а(S) у напрямку до малих кутів розсіювання для будь-якої речовини пов'язано з його стисливістю. При цьому йдеться про граничне значення при S = 0 виразу (88), який був одержаний з точнішого рівняння (87) при виключенні з нього доданку, який визначається зовнішньою поверхнею досліджуваної речовини і не пов'язане з його структурою. Величина а(0), яку визначимо, є граничним значенням розсіюючої здатності речовини, віднесеної до одного атома. Вираз (88) для S = 0 перепишемо у вигляді

(95)

Враховуючи умову нормування функції ρ(R), одержимо

Інтенсивність розсіювання при S = 0 рівна

(96)

Це співвідношення показує, що значення інтерференційної функції при нульовому куті розсіювання представляється як міра флуктуації числа атомів, що містяться в даному об'ємі. Ці флуктуації пов'язані з коефіцієнтом ізотермічної стисливості βT = 1/ρat (dρat /dp)T співвідношенням

(97)

Таким чином,

a(0) = < ρat >kT βT (98)

Згідно цій формулі граничне значення а(0) буде більше для речовин (газів), що сильно стискаються, ніж для тих, що малостискаються (рідин, аморфних тіл). Значення а(S) при малих кутах розсіювання різко зростає при підході до критичної точки, що пов'язане з виникненням флуктуації густини — областей згущування і розрідження. Рідина стає все більш «пористою». Безпосередньо біля критичної точки області згущувань чергуються з областями розріджень. Через необмежене зростання стисливості речовини флуктуації густини можуть перевищувати 100 Å. Користуясь формулою S = 2π/d, знаходимо, що розсіювання на флуктуаціях такої величини виявляється при S = 0,06 Å-1. Це при довжині хвилі λ = 1,54 Å відповідає куту розсіювання близько 40`.

Визначивши а(0), можна по формулі (98) обчислити βT. Проте значення а(0) не можна заміряти експериментально, якщо криві розсіювання виходять від плоскої поверхні зразка. При зйомці на проходження потрібно знати інтенсивність первинного пучка рентгенівського випромінювання або нейтронів. Вимірювання абсолютного значення цієї інтенсивності зв'язане з технічними труднощами. Практично зручніше визначати βT не через граничне значення інтенсивності а(0), а через радіальну функцію ρ(R). Замість (95) можна написати

(99)

звідки

(100)

Цей вираз вельми важливе для пояснення впливу сил тяжіння і відштовхування на пружні властивості рідин. Приведемо декілька прикладів.

Допустимо, що досліджувана речовина складається з симетричних молекул діаметром а, між якими діють тільки сили відштовхування. Радіальна функція розподілу, і залежність енергії взаємодії молекул від відстані між ними виглядають так, як показано на мал. 2.12. З нього виходить, що

U(R) = +∞ , ρat(R) = 0 при R ≤ a (101)

U(R) = 0, ρat(R) —<ρ> = 0 при R > a

Коефіцієнт ізотермічної стисливості такої системи

(102)

Оскільки 4/3πa3 — об'єм, що оточує кожну молекулу, в межі якого не може проникнути інша молекула, то (N/V)(4/3)πa3 = 1 і, отже, βT = 0. Цей результат відповідає моделі твердих непроникних щільно упакованих кульок.

Якщо ті ж молекули притягуються один до одного за законом U(R) = —A/R6 то

(103)

Перший інтеграл визначає площу під кривою розподілу, що відображає потенційну енергію відштовхування молекул. Її значення рівне одиниці, як і у попередньому випадку. Другий інтеграл визначає площу, яка відповідає області тяжіння молекул. Отже,

βT > 0 (104)

Цей результат показує, що облік енергії тяжіння молекул приводить до збільшення стисливості речовини, і чим більше ця енергія, тим вище коефіцієнт стисливості.

Переходячи до реальнішої моделі і вважаючи, що взаємодія молекул описується формулою Леннарда—Джонса, одержимо

(105)

В цьому випадку значення βT буде ще більше за рахунок збільшення площі, обмеженої кривою розподілу. Таким чином, сили відштовхування молекул зменшують стисливість речовини, сили тяжіння збільшують її. І чим більше крутизна кривої відштовхування, тим менше стисливість і більше пружність. Оскільки функція 4πR2at(R) — < ρat >] перетворюється в нуль на відстані R, рівному декільком молекулярним діаметрам, то з (100) витікає, що для стисливості рідини визначальне значення має найближче оточення, характер зміни енергії тяжіння і відштовхування молекул на малих відстанях.

Для кількісного опису пружних властивостей рідин потрібні певні значення функції 4πR2at(R) — < ρat >] при малих R, що пов'язане з необхідністю точних вимірювань функції [а(S) — 1] при великих S. Розрахунки по формулі (100) дають завищені значення βT якщо функція розподілу має помилкові піки при R < R0 обумовлені обривом кривої при S = Smax і приблизними значеннями інтенсивності при великих кутах розсіювання. Для усунення помилкових піків слід в інтерференційну функцію ввести множник ехр(—b2S2) значення параметра b, в якому підбирають так, щоб добуток [a(S) — 1] ехр(—b2S2) при S = Smax було рівне приблизно 0,1 свого первинного значення. Проте множення всіх значень інтерференційної функції на ехр(—b2S2) приводить до деякого зрушення положення першого і подальших максимумів кривої радіального розподілу. Зв'язок структурного чинника з електронними властивостями металів. Однією з фізичних властивостей металів, безпосередньо пов'язаних з ближнім порядком і енергією взаємодії частинок, є електропровідність. Розвиток квантової теорії твердого тіла привів до висновку, що електропровідність рідких металів можна обчислити теоретично за експериментальними даними для структурного чинника а(S), задаючи Фурье-образ потенційної енергії взаємодії електронів з атомами розплаву. Основна ідея, на якій базуються розрахунки електропровідності, полягає у тому, що розсіювання електронів провідності рідкого металу описується структурним чинником, аналогічним для рентгенівського випромінювання або нейтронів. Помітимо, що структурний чинник розсіювання електронів провідності обмежений значеннями S, які для одновалентних металів знаходяться зліва від першого максимуму а(S), а для двох (і більш) валентних металів — справа від нього. В той же час, за даними розсіювання повільних нейтронів і рентгенівського випромінювання довжиною хвилі λ = 0,5—0,7 Å, структурний чинник визначається до S = 15—20 Å-1. За сучасними уявленнями, електрони провідності металу не можна розглядати як вільні. Їх рух в кристалі модульований періодичним силовим полем гратки. Безперервний енергетичний спектр вільних електронів в просторі розпадається на зони дозволених енергій — зони Бріллюена, розділені інтервалами енергій, забороненими для електронів. На шкалі енергій E(k) зони Бріллюена зображають графічно у вигляді смуг дозволених значень енергії і розривів між ними (мал. 2.13).

Характеристики

Тип файла
Документ
Размер
12,88 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее