150857 (594603), страница 3

Файл №594603 150857 (Рентгеноструктурний аналіз молибдену) 3 страница150857 (594603) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Сумарна амплітуда хвиль, розсіяних атомом,

(26)

Вектор nn0 співпадає з напрямом нормалі до площини, що відображає рентгенівське випромінювання. У атомі відбиваючих площин зрозуміло ні. Проте поняттям «нормаль до відбиваючої площини», ми користуватимемося і в даному випадку, оскільки вектор nn0 визначає напрям осі, від якої відлічується полярний кут.

Якщо кут між напрямами первинного пучка і уявною площиною, що відображає, позначити θ, то кут розсіювання 2θ. Очевидно, що | nn0 | = 2sinθ (мал.2.2) Позначаючи α — кут між векторами r і nn0, одержимо для різниці фаз розсіяних хвиль вираз

(27)

де S = (4π/λ)sinθ Параметр S, залежний від довжини хвилі і кута розсіювання, зустрічається в структурному аналізі і в теорії твердого тіла. Він пов'язаний з міжплощинною відстанню d для площин кристалічних граток, від яких походить віддзеркалення першого порядку під кутом θ при довжині хвилі λ. Згідно умові віддзеркалення 2dsinθ = λ , маємо

2sinθ/ λ = 1/d або 4πsinθ/ λ = 2π/d, тобто S = 2π/d (28)

З другого боку, параметр S пов'язаний з хвильовим вектором розсіяної хвилі співвідношенням

S = 2|k|sinθ (29)

а також з вектором оберненої гратки рівністю

S = 2π|r*| (30)

Підставляючи (27) в (26), одержимо для амплітуди розсіювання атомом вираз

(31)

Щоб додати йому конкретніший вигляд, припустимо, що розподіл електронів в атомі сферично симетричний і ρ(r) залежить тільки від модуля вектора r, але не від його напряму. В цьому випадку елемент об'єму dV = r2drsinαdαdφ. Вираз (31) можна написати у вигляді

(32)

Інтегруючи (32) по α і φ, одержимо

(33)

де 4πr2 ρe (r)dr число електронів в сферичному шарі атома між радіусами r і r + dr .

Функція

(34)

характеризує розсіюючу здатність атома і називається атомною амплітудою, а F2(S) — атомним чинником розсіювання. Числове значення F(S) показує, в скільки разів амплітуда розсіювання атомом в даному напрямі більше амплітуди розсіювання одним електроном. При S → 0 функція sinSr/(Sr) → 1; значення F(S) при нульовому куті розсіювання рівне числу електронів атома:

(35)

Отже, чим вище порядковий номер хімічного елементу, тим більше числове значення F(S). Із збільшенням параметра S функція F(S) монотонно убуває.

Щоб обчислити атомну амплітуду F(S) теоретично, потрібно знати просторовий розподіл електронної густини в атомі. Згідно квантової теорії, вірогідність знаходження електрона в точці на відстані r від центру атома визначається хвильовою функцією |Ψ|2 . У разі атома водню

(36)

де r1 — радіус першої боровськой орбіти атома Н. Відповідний вираз для F(S) приймає вигляд

(37)

звідки

(38)

Ця формула показує, що атомна амплітуда розсіювання залежить тільки від S =2ksinθ. Як ρ(r) функція F(S) сферично симетрична. Відмінність між F(S) і ρ(r) полягає у тому, що функція ρ(r) описує розподіл електронної густини в звичному просторі, F(S) представляє цей розподіл в k— просторі, тобто просторі хвильових векторів. Числові значення F(S) для атомів деяких елементів приведені в довідкових таблицях. Знаючи F(S) можна написати вираз для інтенсивності розсіювання атомів:

(39)

Найбільший внесок в когерентне розсіювання вносять внутрішні електрони атома. Зовнішні електрони атома обумовлюють інтенсивне когерентне розсіювання при малих кутах. Це виразно видно з мал. 2.3,а, на якому представлено радіальний розподіл електронної густини ls22s22p63s23p6 електронів іона К+. Там же показане (мал. 2.3,6) відповідне їм f-криві розсіювання. З малюнка видно, що чим далі від ядра знаходиться дана група електронів, тим швидше убуває відповідна їй f-функція з кутом розсіювання. Дійсно, порівнюючи f-криві для ls2-,2s2- і 3s2 электронов іона К+, бачимо, що значення f1s, обумовлене розсіюванням ls2-электронов (r1 = 0,03 Å), майже не змінюється з кутом розсіювання; f2s — крива, обумовлена розсіюванням 2s2-электронами (r2 = 0,18 Å), монотонно спадає, тоді як для f3s -кривої (r3= 0,6 Å) характерне швидке убування з переходом в область негативних значень з подальшою сильно затухаючою осциляцією біля осі абсцис. Амплітуда сумарного розсіювання іона К+

F(S) = f1s(S) + f2s(S) + f2p(S) + f3s(S) + f3p(S) (40)

Відзначимо, що

є інтегралом Фурье, який має властивість оборотності.

Це дозволяє визначити функцію радіального розподілу електронної густини атома за даними про амплітуду розсіювання на цьому атомі, тобто перейти від зворотного простору до звичного координатного простору. При цьому

(41)

На мал. 2.4 представлена залежність електронної густини від відстані в атомі неону. Як видно, дані експерименту цілком відповідають теоретичним розрахункам.

В розсіяному випромінюванні присутні хвилі із зміненою довжиною хвилі. Вони виникають в результаті ефекту Комптона, тобто зіткнень первинних фотонів рентгенівського випромінювання із зовнішніми слабкозв'язанними електронами атомів. Фотон при зіткненні з електроном віддає йому частину енергії і імпульсу, і передає кінетичну енергію mυ2/2 (мал. 2.5). Відхиляючий від первинного напряму, фотон має вже меншу енергію і менший імпульс і має велику довжину хвилі. Нехтуючи релятивістськими ефектами, запишемо:

а) рівняння збереження енергії

(42)

б) рівняння збереження імпульсу

(43)

Тоді зміна довжини хвилі фотона при некогерентному розсіянні

З цієї формули видно, що у міру збільшення кута розсіювання значення ∆λ, зростає від нуля до 0,048 Å.

У структурному аналізі має істотне значення не стільки зміна довжини хвилі при розсіянні рентгенівського випромінювання, скільки внесок некогерентного розсіювання в сумарну інтенсивність розсіювання досліджуваної речовини.

Некогерентне розсіювання дає безперервний фон, інтенсивність якого зростає з кутом розсіювання. При великих значеннях S некогерентне розсіювання від елементів з малим атомним номером може перевершувати когерентне у декілька разів (мал. 2.6). Тому воно завжди віднімається із загального розсіювання. Звичний спосіб обліку поправки на некогерентне розсіювання полягає в обчисленні його величин теоретично по одній з формул, виведених для цієї мети. Одна з них має вигляд

,

,

де Z — атомний номер елементу.

Таким чином, повна інтенсивність незалежного розсіювання одним

атомом складається з когерентного і некогерентного доданків:

I(S)= IK(S)+ IHK(S) (44)

Розсіювання електронів вільним атомом

Застосування методу дифракції електронів для дослідження молекулярної структури речовини засноване на хвильових властивостях цих частинок. Пучок електронів, що розповсюджується у напрямі осі X, можна представити плоскою монохроматичною хвилею, описуваною хвильовою функцією

Взаємодіючи з електричним полем атома, ця хвиля частково розсівається. На відстані L від центру атома розсіяна хвиля представляється у вигляді

(45)

де fe(S) — атомна амплітуда розсіювання електронів, що має розмірність довжини.

Результуюча електронна хвиля представляється суперпозицією падаючої плоскої і розсіяної сферичної хвиль:

(46а)

або

Ψ = Ψ0 + η (46б)

де А і B — деякі постійні.

Тут η << Ψ0, оскільки розсіювання складає лише незначну частку первинного пучка. Результуюча хвильова функція Ψ електрона, рухаючегося в електричному полі атома, знаходиться з рівняння Шредінгера:

(47)

де m — маса розсіюючого електрона, E — його повна і U(r) —-потенційна енергія в електричному полі атома, h — постійна Планка. Передбачається, що U(r) швидко убуває із зростанням відстані r від ядра. Підставимо (46б) в (47). Враховуючи, що хвильова функція Ψ0 плоскої хвилі задовольняє рівнянню руху електрона поза атомом (∆Ψ0 + k2Ψ0= 0), і нехтуючи добутком U(r)η як величиною другого порядку малості, одержимо

(48)

де k2 = 8π2mE/h2 = (2π/λ)2

Вираз (48) аналогічно рівнянню Пуассона. Його рішення має вигляд

(49)

де r — відстань від центру атома до електрона; L — відстань від центру O атома до точки спостереження A; l = L—rn; (r n) — проекція вектора r на напрям розсіювання n (мал. 2.7). Якщо точка спостереження знаходиться на великій відстані від центру атома, то в знаменнику (49) можна замінити l на L. Тоді

(50)

Зіставляючи це рівняння з (45), можна записати вираз для атомної амплітуди розсіювання електронів:

(51)

Переходячи до сферичних координат і інтегруючи (51) по α і φ, одержуємо

(52)

Цей вираз нагадує атомний чинник для рентгенівського випромінювання

(51)

Зіставляючи вирази (52) і (51), помічаємо, що амплітуда розсіяної електронної хвилі пропорційна потенційній енергії електрона в полі атома, тоді як амплітуда розсіювання рентгенівського випромінювання пропорційна електронній густині атома.

Для безпосередніх обчислень атомних амплітуд розсіювання електронів зручно у формулі (51) виразити потенційну енергію U(r) через електронну густину ρe(r). Запишемо в явному вигляді вираз для U(r).

Електростатичний потенціал в будь-якій точці атома складається з потенціалу позитивно зарядженого ядра і потенціалу електронної оболонки. Потенціал в точці r, створюваний зарядом ядра, рівний Ze/r. Щоб визначити потенціал, створюваний в тій же точці зарядом електронної оболонки атома, розглянемо елемент об'єму dV1 на відстані r1 від центру О атома (мал. 2.8). Заряд, зосереджений в цьому об'ємі, рівний eρe(r1)dV1. Потенціал в точці r, створюваний цим зарядом, eρe(r1)dV1/|rr1|. Потенціал в тій же точці, створюваний всією електронною оболонкою атома, представиться як

Загальна потенційна енергія електрона усередині атома виразиться формулою

(52)

Підставляючи цей вираз в рівняння (52), одержимо

(53)

Візьмемо перший інтеграл

(54)

якщо, як і раніше, покласти dV = r2drsinαdαdφ. Щоб обчислити другий доданок, замінимий в ньому порядок інтеграції:

Інтеграл

якщо eiSrcosα = ρе (r), тобто він може розглядатися як потенціал, створюваний в точці r електричним зарядом, розподіленим в просторі з густиною ρе (r), З другого боку, потенціал φ(r) пов'язаний з густиною ρе (r), рівнянням Пуассона

Δφ(r) = — 4π ρе(r) = — 4πei S r (55)

Інтегруючи (55) по r, одержимо

φ(r) = 4πei S r /S2 (56)

Отже, (57)

Другий доданок в (53) можна представити у вигляді

Інтегруючи по α і φ і опускаючи індекс при r, одержимо

Атомна амплітуда розсіювання електронів визначається формулою

(58)

Або (59)

Використовуючи значення атомних амплітуд розсіювання рентгенівського випромінювання, можна по цій формулі обчислити fe(S) для будь-якого елементу. Звівши (59) в квадрат, одержимо інтенсивність когерентного розсіювання окремим атомом:

(60)

Підставляючи числові значення постійних, знайдемо

Когерентне розсіювання електронів складається з ядерного і електронного: член, що містить r2, визначає частку інтенсивності розсіювання ядром, член з F2(S) — інтенсивність розсіювання оболонкою атома, нарешті, член, що містить ZF2(S) визначає інтенсивність розсіювання електронною оболонкою і ядром. Загальна інтенсивність розсіювання електронів убуває обернено пропорційно до S4. У разі рентгенівського випромінювання інтенсивність розсіювання спадає обернено пропорційно до S. Зменшення інтенсивності з кутом розсіювання пояснюється тим, що довжина хвилі цих випромінювань менше розмірів атомів. Внаслідок цього відбувається інтерференція хвиль, розсіяних кожним атомом окремо.

Порівняння (60) з (39) показує, що розсіювання електронів тими ж атомами майже в 106 разів більше розсіювання рентгенівського випромінювання. Цим обумовлюється швидкість отримання електронограм. Експозиції електронографічних досліджень вимірюють секундами, тоді як при рентгенографічних — хвилинами і годинами. До того ж для спостереження картини дифракції електронів достатньо узяти плівку в 200—300 Å, тоді як товщина шаруючи речовини при рентгенографічних дослідженнях близько 1 мм.

При розсіянні електронів разом з когерентними, розповсюджуються електрони, що втратили частину своєї енергії унаслідок непружного розсіювання на атомах. Це розсіювання викликає фон, інтенсивність якого обчислюють по формулі

(61)

де IHK(S) — інтенсивність некогерентного розсіювання рентгенівського випромінювання.

Розсіювання повільних нейтронів на вільному ядрі

Застосування нейтронів для дослідження атомномолекулярної структури речовини засноване на явищі дифракції (розсіювання) цих частинок. Використовують повільні нейтрони з энергией 2 •10-1 — 2•10-3 еВ, що згідно формулі

λ = h/(2mE)1/2 (62)

відповідає довжині хвилі 0,5 — 6,0 Å.

Через відсутність у нейтронів електричного заряду їх розсіювання інше, ніж у рентгенівського випромінювання і електронів. Процес розсіювання нейтронів не залежить від заряду ядер, а визначається їх складом і спином.

Розсіювання нейтронів пояснюється взаємодією їх з ядрами. Воно характеризується ефективним перерізом розсіювання, визначуваним як відношення числа нейтронів, що відхилюють одним ядром за одиницю часу, до числа нейтронів, падаючих за той же час на одиницю площі шаруючи речовини: σ =Δn/n З цього визначення виходить, що σ має розмірність площі. Дійсно, оскільки [Δn] = 1/T, [n] =1/(TL2) то [σ] = L2. Перетин розсіювання нейтронів можна виразити через хвильову функцію падаючих і розсіяних хвиль. Якщо — хвильова функція падаючої на ядро плоскої нейтронної хвилі, а — хвильова функція сферичної розсіяної хвилі, то згідно сказаному повний переріз розсіювання ядром

(63)

де fn — амплітуда когерентного розсіювання нейтронів. Оскільки fn має розмірність довжини, то її називають також довжиною розсіювання. Відмітною особливістю розсіювання повільних нейтронів є ізотропна по всіх напрямах, незалежність його перетину від енергії налітаючих нейтронів. Це пояснюється тим, що довжина хвилі повільних нейтронів (λ≈10-10 м) велика в порівнянні з радіусом дії силового поля ядра (r ≈ 10-15 м), а їх енергія мала в порівнянні з енергією зв'язку усередині ядра.

Для детальнішої характеристики взаємодії нейтронів з ядром вводять поняття диференціального переріза розсіювання dσ, визначуваного як кількість нейтронів, розсіяних усередині тілесного кута dΩ. Диференціальний переріз залежить від кута розсіювання. Дійсно, якщо на ядро, що покоїться, направити пучок нейтронів, то залежно від того, на якій прицільній відстані від ядра вони пролітають, кут їх розсіювання буде неоднаковий. Деякі налітаючі нейтрони розсіваються під кутом, близьким до 180°, інші — під дуже малими кутами.

Отримання і інтерпретація даних по розсіянню нейтронів з метою визначення структури речовини засновані на вимірюванні диференціального переріза розсіювання залежно від кута θ і енергії En налітаючих нейтронів.

Дослідження показують, що взаємодія нейтрона з речовиною може привести не тільки до розсіювання, але і до захоплення його ядром і утворенню проміжного ядра з подальшим випуском нейтрона. Який з цих процесів переважає, залежить від енергії падаючого нейтрона і властивостей ядра.

Отже, в загальному випадку ядерне розсіювання повільних нейтронів є накладенням потенційного і резонансного розсіювання. Загальна амплітуда розсіювання без урахування спину ядра представляється у вигляді двох доданків:

(64)

де En — енергія падаючого нейтрона; Ep — енергія, якою повинен володіти нейтрон, щоб викликати резонанс в складеному ядрі; i—число ізотопів; Гn — нейтронна ширина енергетичного рівня, пов'язана з вірогідністю розсіювання нейтрона, падаючого на ядро- мішень; Г — ширина резонансного максимуму на половині його висоти, рівної σт (мал. 2.9) (тут σр — перетин при резонансі, тобто при E = Ep).

Диференціальний переріз розсіювання на вільному ядрі визначається по формулі

(65)

За відсутності у ядра резонансних рівнів, достатньо близьких до енергії падаючого нейтрона, резонансним членом можна знехтувати. В цьому випадку амплітуда розсіювання визначатиметься чисто потенційним членом, який завжди позитивний і рівний радіусу r ядра:

i = f2ndΩ σi = 4πr2 (66)

На підставі останньої формули можна укласти, що потенційне пружне розсіювання повільних нейтронів відбувається як би на непроникних сферах того ж радіусу, що і ядро. Оскільки радіус ядра r = 1,5•10-15(A)1/3 [м] [м], де A—атомна маса ядра, те значення σi може бути обчислене для будь-якого елементу. Співвідношення (66) добре виконується для важких елементів. Для легких атомів спостерігається відхилення від цієї залежності.

При наближенні енергії падаючих нейтронів до значення енергії резонансного рівня ядра другий доданок в (64) стає достатньо великим, щоб переважати над потенційним членом. При цьому різниця E—Ep може бути як позитивною, так і негативною. Для H, Li і Мn резонансний член, будучи негативним, переважає над потенційним, приводячи, таким чином, до негативної амплітуди розсіювання. Якщо ядро володіє спином j, то результат складання його із спином падаючого нейтрона, рівним ±1/2, може привести до утворення складених ядер із спинами відповідно j + 1/2 і j — 1/2; В цьому випадку розсіювання повільних нейтронів на вільному ядрі описуватиметься не одній, а двома амплітудами розсіювання: f + і f . Перша амплітуда відповідає паралельній взаємній орієнтації спинів ядра і падаючого нейтрона, друга — антипаралельної орієнтації спинів. При цьому диференціальний переріз розсіювання

(67)

Множники при f2 + і f2 . визначають вірогідність реалізації різних станів спинів системи з нейтрона і ядра при їх зіткненні.

Формула (67) показує, що розсіювання повільних нейтронів на вільних ядрах повністю визначається значенням амплітуд f + і f . які можуть бути знайдені експериментально. Якщо в розсіянні нейтронів бере участь система зв'язаних ядер, то амплітуда розсіювання на вільному ядрі повинна бути замінена амплітудою розсіювання на зв'язаному ядрі. У разі одноатомної речовини fn → b = f(1 + 1/A). Дослідження показують, що амплітуди розсіювання повільних нейтронів для різних ядер знаходяться в інтервалі від 0,3•10-14 до 1•10-14 см, що відповідає інтегральному перетину розсіювання σ ≈ 10-28м2. Це майже на два порядки більше відповідної величини для рентгенівського проміння.

Якщо в розсіянні бере участь не одне ядро, а деякий колектив ядер, то розсіювання повільних нейтронів матиме когерентну і некогерентну складові. Когерентне розсіювання викликається впорядкованим розташуванням ядер. У некогерентному розсіянні ядра беруть участь неузгоджено, що говорить про безлад в розташуванні ядер. Наявність у нейтрона магнітного моменту приводить до магнітного розсіювання нейтронів речовиною. Якщо магнітні моменти атомів або іонів розсіювача орієнтовані хаотично (парамагнетіки), то магнітне розсіювання має дифузний характер. Якщо ж останні мають впорядковану орієнтацію (феромагнетики і антиферомагнетики), то магнітне розсіювання повільних нейтронів є когерентним і разом з ядерним когерентним розсіюванням вносить внесок в загальне розсіювання. Аналіз даних по розсіянню нейтронів дає пряму інформацію про розподіл і орієнтацію магнітних моментів атомів в досліджуваній речовині, що неможливо одержати інакше. На мал. 2.10 показані атомні амплітуди когерентного розсіювання рентгенівського випромінювання, електронів і нейтронів. Найсильніша залежність атомної амплітуди від кута розсіювання у електронів, менш сильна — у рентгенівського випромінювання і зовсім вона відсутня у повільних нейтронів. Це враховується при постановці і проведенні структурних досліджень.

Істотно, що амплітуди розсіювання рентгенівського випромінювання і електронів однакові для всіх ізотопів даного елементу, тоді як амплітуди розсіювання нейтронів fn для різних ізотопів різні. Завдяки цьому повільні нейтрони служать виключно зручним засобом вивчення структури твердих тіл і рідин, що містять атоми з дуже близькими або достатньо далекими порядковими номерами; вони практично незамінні в структурних дослідженнях сполук, що містять, водень дозволяючи фіксувати положення атомів водню і довжину водневих зв'язків.

Відзначимо, що з трьох видів випромінювань, вживаних для дослідження структури рідин, найбільш підходить рентгенівське. Щоб в цьому переконатися, порівняємо енергію нейтрона і рентгенівського фотона, а також час прольоту ними відстані порядку міжатомного, тобто 10-10м. При цьому

Eф =hc/λ En =h2/(2mλ2)

звідки

Eф =2mcλ/h = 105 En (68)

Оскільки швидкість фотона c ≈ 108 м/с, а швидкість нейтрона υn=(3kT/m)1/2 = 103 м/с, той час проходження ними відстані порядка 10-10 м складає 10-18 с для фотона і 10-13 с для нейтрона. Отже, енергія рентгенівських фотонів майже в 105 разів більше, ніж енергія нейтронів при тій же довжині хвилі. У стільки ж разів менше тривалість взаємодії фотона з атомом. Тому для рентгенівського випромінювання непружне розсіювання атомів не виконує ролі, для нейтронів же воно складає значну частину загального розсіювання, що ускладнює методику дифракційного експерименту. Разом з цим слабке поглинання нейтронів дозволяє одержувати діфрактограми від рідких металів, сильно поглинаючих рентгенівське випромінювання. Застосування до рідин електронографічних досліджень зв'язане з рядом важкоусуваємих побічних ефектів. Електрони є зручним засобом вивчення будови молекул газів, структури кристалічних і аморфних тіл.

Розсіювання однаковими атомами

Розглянемо розсіювання рентгенівського випромінювання, електронів і нейтронів сукупністю атомів одного елементу (зріджені інертні гази, розплавлені метали, напівметали і діелектрики). Виведемо рівняння, що зв'язує кутовий розподіл інтенсивності розсіяного випромінювання з радіальною функцією розподілу W(R) яка описує ближній порядок в розташуванні атомів. Припустимо, що паралельний пучок монохроматичного проміння довжиною хвилі λ направлений на зразок досліджуваної речовини, миттєве положення атомів якого визначається векторами R1,R2,…RN щодо довільно вибраного початку відліку. Позначимо F1,F2,…FN — атомні амплітуди розсіювання; N число атомів, що беруть участь в розсіянні. Сумарну амплітуду хвилі, розсіяної даною конфігурацією атомів, можна представити у вигляді

(69)

Відповідну інтенсивність визначимо множенням виразу (69) на його комплексно-зв'язану величину:

або

(70)

де Ie інтенсивність, віднесена до інтенсивності розсіювання одним електроном; Rj — Rk — векторна міжатомна відстань. Подвійна сума містить N2 членів. Серед них є N членів, для яких j ≠ k. Для кожного такого члена експоненціальний множник звертається в одиницю. Інші N2 — N членів залежать від взаємного розташування атомів. Оскільки, по припущенню, всі атоми системи однакові, вираз (70) приймає вигляд

(71)

Воно визначає інтенсивність розсіяного випромінювання, обумовленого миттєвим розташуванням атомів. Проте дифракційний експеримент дає не миттєву, а середню за час експозиції картину розсіювання.

Для того, щоб теоретично знайдений кутовий розподіл інтенсивності і одержане з досвіду відповідали один одному, необхідно всі члени подвійної суми в (71) усереднити по всіх можливих положеннях атомів в опромінюваному об'ємі зразка. Результат усереднювання залежатиме від того, чи є міжатомний вектор Rjk = RjRk постійним по модулю або ж що безперервно змінюється від точки до точки. Випадок Rjk = const відноситься до молекули, другої — до речовини з безперервним розподілом атомів. Досліджуємо газ, молекули якого складаються з n атомів. Якщо тиск газу не дуже великий, то за кінцевий проміжок часу всі орієнтації молекул зустрічатимуться однаково часто. Отже, щоб одержати повну інтенсивність розсіювання в газі, потрібно визначити середнє значення інтенсивності для однієї молекули і помножити його на число молекул газу.

Щоб визначити середнє значення I(S), розглянемо в молекулі атоми j і k. Сумістимо початок координат з центром атома j. За вісь відліку кута α приймемо вектор nn0 паралельний осі Z . Тоді вірогідність того, що напрям вектора Rjk складає з осями координат кути, укладені між α і α + d α, φ і φ + d φ, рівна відношенню елементу сферичної поверхні до поверхні сфери:

(72)

Умножаючи (71) на (72) і інтегруючи по кутах α і φ, знайдемо для однієї молекули формулу вперше одержану Дебаєм.

(73)

Вона описує зв'язок між кутовим розподілом інтенсивності розсіювання окремими молекулами і їх структурою. Якщо молекули газу двухатомні, то інтенсивність розсіювання ними рівна

(74)

При малих значеннях S інтенсивність I(S) наближається до 4F2, а при великих S — до 2F2. У області проміжних значень S крива має максимуми і мінімуми, положення яких визначимо, прирівнявши нулю похідну функції (74). Припускаючи, що атоми розсіюють як точки, що справедливе для нейтронів, одержимо рівняння tgSR = SR . З його рішення виходить, що перший максимум I(S) з'являється при S1R1 = 2,459π = 7,73 звідки

R1 = 7,73/S1 (75)

Насправді атоми розсіюють рентгенівське випромінювання і електрони не як точки і функція F2(S), що фігурує як співмножник у формулі (74), швидко убуває у міру зростання S. В результаті максимуми на кривій розсіювання стають менш чіткими, їх положення зміщується у бік великих S. Тому, щоб по формулі (75) обчислити відстань між атомами в двоатомній молекулі, необхідно розділити інтенсивність, заміряну для кожного кута, на атомний чинник, відповідний цьому куту. При цьому виходить функція інтенсивності а(S)= 1 + sinSR/(SR) перший максимум якої описується формулою (75). Якщо молекула містить більше двох атомів, то експериментальна крива інтенсивності визначиться сумою кривих, описуваних рівнянням (74). При цьому положення першого максимуму може не відповідати значенню R1. Для рідин і аморфних тіл обчислення середнього значення подвійної суми у виразі (71) роблять за допомогою радіальної функції розподілу W(R), пов'язаної з вірогідністю знаходження атома j в елементі об'єму dVj а атома k — в елементі dVk, співвідношенням

(76)

де V — об'єм розсіюючої частини зразка; Rjk — відстань між парою атомів.

Середнє значення часток інтенсивності, що вносяться парами атомів j і k, виходить при множеннях кожного члена в подвійній сумі на (76) і інтеграціях по елементах об'єму як для dVj так і для dVk. Отже,

(77)

При збільшенні Rjk функція W(Rjk)→1, тому її зручно уявити у вигляді

W(Rjk) = [W(Rjk) — 1]+1 (78)

Припускаючи, що всі N(N — 1) членів подвійної суми рівні між собою, і нехтуючи одиницею в порівнянні з N, маємо

(79)

Або <I> = NF2(1 + NX1 + NX2) (80)

Розглянемо інтеграл

(81)

Інтеграція по Vj розповсюджується на весь об'єм розсіюючої частини зразка, який можна прийняти за сферу радіусу L. Що ж до об'єму Vk той його аналітичний вираз залежить від взаємного розташування атомів. Але оскільки функція W(Rjk) сферично симетрична і при Rjk > Rk рівна одиниці, можна припустити, що Vk має форму сфери, радіус Rk якої визначає протяжність ближньої впорядкованості атомів.

Щоб обчислити подвійний інтеграл (81), припустимо, що вірогідність знаходження атома усередині об'єму V скрізь однакова. Тоді

Сумісний центр атома j з початком координат. Положення атома k по відношенню до атома j визначатиметься відстанню R і кутами α і φ. Вираз (81) перетвориться до вигляду

(82)

Інтегруючи (81), одержимо

(83)

Подвійний інтеграл обчислюється точно в припущенні, що розсіююча частина зразка має форму сфери радіусу L.

(84)

Підінтегральний вираз розпадається на два множники, одні з яких залежить від координат атома j а інший — від координат атома k. При цьому кожна інтеграція розповсюджується на весь об'єм V. Маємо

(85)

Підставляючи в (80) формули (83) і (85) знаходимо що усереднена інтенсивність розсіювання рівна

(86)

Оскільки функція W(R)= 1 при R ≥ Rk то межі інтеграції від 0 до можна замінити межами від 0 до Rk. Враховуючи, що W(R) = Nρат(R)/V, а N/V = <ρат> одержимо

(87)

Перший доданок визначає інтенсивність розсіювання окремими атомами за відсутності інтерференції між ними; друге — розподіл інтенсивності розсіювання за наявності інтерференції, обумовленої ближнім порядком в розташуванні атомів. Третій доданок визначає інтенсивність розсіювання у області дуже малих кутів. Числове значення цього доданку залежить від розміру і форми зразка і не залежить від його внутрішньої структури. Дійсно, максимальне значення функції φ(SL)= 3(sinSL—SLcosSL)/(SL)3 дорівнює одиниці при SL = 0. Із зростанням SL функція φ(SL) здійснює сильно затухаючі осциляції щодо нульових значень, визначуваних рівнянням SL = tgSL, тобто при SL рівних 4,49; 7,74. При SL> 4,49 значення φ(SL) малі в порівнянні з одиницею. З рівності S = 4,49/L витікає, що для зразків порядка 0,1—0,2 см значення S = 4,5•10-7 Å -1. Малокутове розсіювання на зразках таких розмірів співпадає з первинним пучком. Його інтенсивність не може бути заміряна за допомогою звичних засобів. Це розсіювання експериментально виявляється в тих випадках, коли в досліджуваній речовині є флуктуації, колоїдні частинки або макромолекули розміром до 103 Å. Таким чином, за винятком малокутового розсіювання, інтенсивність, вимірювана експериментально, визначається рівнянням

(88)

Характеристики

Тип файла
Документ
Размер
12,88 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее