150157 (594528), страница 3
Текст из файла (страница 3)
В твёрдых растворах молекулы находятся в триплетном состоянии более длительное время, поэтому представляется удобным исследовать основные характеристики межмолекулярного переноса энергии именно в данных системах. Исследования в данном направлении можно разделить по типу центров, между которыми наблюдается перенос энергии: а) между одиночными молекулами различных примесей, б) между одинаковыми молекулами примесей (миграция энергии), либо в) от основы (матрицы растворителя) к молекулам примеси.
При исследованиях переноса энергии между одиночными молекулами следует учитывать пространственное распределение молекул примесей в каждом из растворителей.
В стеклообразных растворителях, как и в жидкостях, в силу однородности растворителя молекулы примеси равноудалены друг от друга. Функция распределения молекул f(r) может быть аппроксимирована - функцией, причём наиболее вероятное значение расстояний между ближайшими молекулами определяется средней концентрацией молекул
:
. Основным условием переноса энергии между одиночными молекулами в данной среде является хорошая растворимость молекул донора и акцептора для создания достаточно высоких концентраций, при которых становится заметен безызлучательный триплет-триплетный перенос энергии. Основные результаты по параметрам межмолекулярного триплет-триплетного переноса энергии получены в основном в стеклообразных растворах [7]. Зависимость константы скорости (3) от расстояния обычно представляют в виде [10,68]
Kобм(r) = k0 exp [-2(r-R)/L], (4)
где k0 – константа скорости при контакте донора и акцептора, R – радиус запрещённого объёма. Для большого набора пар доноров и акцепторов триплетного возбуждения в ряде работ [10-14] определены критические расстояния переноса энергии R0 и сделана оценка параметров спада обменных взаимодействий L. Следует отметить, что даже для наиболее изученной пары бензофенон-нафталин получены параметры (табл. 1), очень сильно отличающиеся друг от друга.
Таблица 1
Параметры обменно-резонансного тушения фосфоресценции бензофенона нафталином в стеклообразных матрицах
R0, Å | L, Å | lg k0 | Источник |
13,7 | 1,10 | 10 | [11] |
14,9 | 1,87 | 7,1 | [12] |
12,9 | 1,43 | 7,2 | [10] |
14,5 | 0,66 | 16 | [13] |
12,7 | 0,77 | 10,2 | [14] |
В работе [14] предполагается, что причиной подобного различия может быть некорректный анализ экспериментальных данных. Здесь же предложена экспериментальная методика и процедура обработки результатов, позволяющих корректно, по мнению авторов, извлекать информацию о механизме и параметрах тушения на основе анализа кинетических кривых затухания молекул донора в присутствии молекул акцептора.
Используя литературные значения где k0 и L можно рассчитать константу скорости динамического тушения в невязких жидкостях [69]:
kдин = (L3/2) k0 ( 2+2+2) 2R2Lk0, (5)
где = 2R/L. Полученные значения kдин на 5-8 порядков ниже экспериментальных величин. Авторы работы [70] предполагают, что причиной этого может быть неэкспоненциальный характер зависимости константы скорости тушения от расстояния.
На наш взгляд, вышеуказанные несоответствия параметров переноса могут быть обусловлены и другими причинами. При определении параметров переноса считается, что тушение молекул донора обусловлено только одиночными молекулами акцептора, участвующими в излучении сенсибилизированной фосфоресценции. Однако при столь высоких концентрациях раствора в стеклообразных растворителях (10-2 – 1 М/л) не исключено появление нелюминесцирующих или слаболюминесцирующих ассоциатов различной степени сложности (как гомо-, так и гетероассоциатов), на которые происходит эффективный перенос энергии [19]. Это также может являться причиной некорректного определения k0 и L. Наличие такого механизма концентрационного тушения должно приводить к несоответствию параметров тушения фосфоресценции донора и сенсибилизированной фосфоресценции акцептора.
Следует отметить также, что в стеклообразных растворах даже при столь высокой растворимости, которую позволяют создать концентрации примесей 1 М/л, среднее расстояние в донорно-акцепторной паре составляет 12-15 Å. Поэтому можно считать, что теоретические выводы по обменно-резонансному механизму проверены только до определённых расстояний в донорно-акцепторной паре. Особенности же переноса энергии при более близком расположении молекул примесей до конца не изучены.
Взаимодействие молекул растворителя с молекулами активатора так же может вносить вклад в измеряемые параметры свечения.
В последние годы значительно возрос интерес к исследованиям взаимодействий между молекулами, адсорбируемыми на поверхности твёрдого тела [71-82]. Такие системы позволяют получить достаточно близкие расстояния между взаимодействующими молекулами, а так же интерес к таким системам обусловлен особенностями влияния микроскопической структуры матрицы на физические характеристики молекул.
Адсорбция примесей может быть получена на порошкообразных окисях магния и алюминия, на поверхности кремнозёма, в пористых и канальных матрицах. В качестве матриц используются стёкла, полученные по золь-гелевой технологии или путём выщелачивания натриевоборосиликатного стекла. Одна из особенностей заключается в том, что пространственное распределение молекул примесей носит фрактальный характер и характеризуется значительным разбросом расстояний между ближайшими соседними молекулами адсорбата, т.е. функция f(r) отличается от - функции. Фракталы могут возникать либо в результате агрегации при диффузии (в них расстояние между ближайшими соседними частицами очень мало, постоянно и контролируется обычными, например ван-дер-ваальсовыми взаимодействиями между этими частицами), либо при взаимодействии с матрицей, вмещающей эти частицы [77].
Багничем С.А. исследовалась динамика триплетных возбуждений ароматических углеводородов при переходе от стеклообразных матриц к пористым [74,75]. Обнаружено отличие спектров фосфоресценции, кинетики затухания, и температурной зависимости интегральной интенсивности фосфоресценции бензофенона в этаноле, золь-гелевой матрице и пористом натриевоборосиликатном стекле. Спектр бензофенона в пористых матрицах смещается в коротковолновую область, затухание фосфоресценции носят неэкспоненциальный характер, причем времена затухания уменьшаются. Существенные различия наблюдаются в температурных зависимостях: в золь-гелевой матрице имеет место слабая зависимость интегральной по спектру интенсивности фосфоресценции, в натриевоборосиликатном стекле в области 77 -90 К происходит быстрое уменьшение интенсивности свечения. Обсуждая причины, лежащие в основе данных различий, автор говорит о наличии в пористых матрицах по крайней мере двух видов центров адсорбции, которые характеризуются противоположным действиям на фосфоресценцию карбонильных соединений. К одному из них можно отнести гидроксильные группы, структурно связанные с поверхностными атомами кремния, ко второму типу можно отнести поверхностные комплексы В(ОН)2+, сообщающие поверхности протонноакцепторные свойства [73].
Другими системами, в которых распределение молекул примесей существенно отличается от стеклообразных являются н.-парафиновые растворы. Н.-парафиновые растворители являются нейтральными по отношению к ароматическим углеводородам и поэтому оказывают меньшее влияние на параметры их люминесценции. Эти растворы кристаллизуются при замораживании, образуя снегообразную массу. При замораживании молекулы активатора могут либо внедряться в кристаллики растворителя по принципу замещения, либо вытесняться в межблочное пространство [25-27].
Ранее уже проводились исследования переноса энергии в данных системах [83,84]. Основной задачей авторов этих работ было получить квазилинейчатые спектры сенсибилизированной фосфоресценции. Однако получить квазилинейчатый спектр в условиях триплет-триплетного переноса энергии в таких системах долгое время не удавалось. Впервые наиболее узкий спектр сенсибилизированной фосфоресценции, принадлежащий индивидуальным молекулам акцептора , удалось получить для дифениленоксида в н.-гептане при 77К, используя в качестве донора антрон [85]. Далее были проведены исследования большого количества донорно-акцепторных пар в кристаллизующихся при 77К растворах и обнаружено, что только часть из них при определённой концентрации (10-3 моль/л) дают узкий спектр [86]. Однако, даже в случае самых узких линий они были шире, чем для обычной фосфоресценции акцептора. В качестве причины уширения спектров авторами была выдвинута гипотеза об увеличении силы электрон-фононной связи акцептора с матрицей в присутствии донора, но в дальнейшем она не получила полного экспериментального подтверждения.
Можно предположить, что причинами трудностей получения квазилинейчатых спектров в н.-прафиновых растворах является небольшая вероятность попарного внедрения молекул донора и акцептора. Большие используемые концентрации растворов предполагают не только внедрение, но и вытеснение молекул примесей на поверхность кристалликов, где на поверхности создаются повышенные локальные концентрации примесных молекул, а следовательно и благоприятные условия для переноса энергии. Люминесценция вытесненных молекул имеет диффузный характер и может быть интенсивнее квазилинейчатого спектра. Понижение же концентрации молекул примесей уменьшают вероятность попарного внедрения молекул донора и акцептора.
К настоящему времени остаётся нерешённым ещё ряд вопросов, связанных с триплет-триплетным переносом энергии электронного возбуждения.
Так, в работах Ермолаева В. Л. [7,21] показано, что квантовый выход сенсибилизированной фосфоресценции в отсутствие концентрационного тушения не зависит от концентрации раствора. Однако, как показали наши предварительные эксперименты [35], в н.-парафиновых растворах, уже начиная с концентраций примесей 10-3 М, во многих растворителях наблюдается падение квантового выхода сенсибилизированной фосфоресценции с увеличением концентрации молекул акцептора в растворе. По-видимому, это связано с агрегацией молекул примесей. Механизмы влияния агрегации на квантовый выход сенсибилизированной фосфоресценции к настоящему времени до конца не изучены.
В первых же работах по изучению триплет-триплетного переноса энергии не было обнаружено заметных различий между обычной и сенсибилизированной фосфоресценцией молекул примесей в стеклообразных растворах как в спектрах, так и в кинетике. В работе [87] было показано, что затухание сенсибилизированной фосфоресценции молекул аценафтена, дифенила и флуорена в замороженных растворах н.-гексана, толуола и этанола при 77 К происходит более быстро, чем обычной. Кроме того, в некоторых случаях наблюдался биэкспоненциальный характер кинетики. Причины такого различия к настоящему времени до конца не установлены. Следует заметить, что время затухания сенсибилизированной фосфоресценции тем больше отличается от затухания обычной фосфоресценции, чем больше концентрация молекул примеси в растворе. Поэтому не исключено, что и этот эффект каким-то образом связан с агрегацией молекул примесей.
Таким образом, в условиях межмолекулярного триплет-триплетного переноса энергии (сравнительно высокие концентрации) наряду с тушением триплетных молекул донора одиночными молекулами акцептора по-видимому возможны и другие механизмы тушения. Их наличие должно проявляться в несоответствии параметров тушения фосфоресценции донора и сенсибилизированной фосфоресценции акцептора. Поэтому для установления и изучения возможных механизмов тушения в условиях переноса энергии необходимо исследование наряду с параметрами фосфоресценции донора параметров сенсибилизированной фосфоресценции акцептора.
1.2 МЕХАНИЗМЫ КОНЦЕНТРАЦИОННОГО ТУШЕНИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ В РАСТВОРАХ
На тушение люминесценции при увеличении концентрации растворов обращал внимание ещё Вавилов [88]: «Свечение растворов (как и всякое свечение в обычной оптической трактовке) может быть характеризовано четырьмя свойствами – спектрами излучения и поглощения, выходом, поляризацией и длительностью. Опыт показывает, что все эти свойства при значительном возрастании концентрации раствора могут претерпевать изменения: спектры деформируются, выход падает, поляризация свечения так же убывает, уменьшается и длительность свечения».