DD (594196), страница 5
Текст из файла (страница 5)
Автоматизация управления процессами в спекательном отделении заключается в автоматическом поддержании высоты слоя аглошихты, загружаемой на машину, автоматическом регулировании уровня шихты в промежуточном бункере (промбункере) над агломашиной, контроле и автоматическом управлении процессом зажигания шихты и регулировании законченности процесса спекания в конце активного участка аглоленты. Отдельный узел управления составляют механизмы охлаждения и дозирования возврата.
С целью оперативного управления агломерационным процессом на аглофабрике осуществляют контроль следующих технологических параметров:
-
скорость движения аглоленты;
-
объемных расходов природного газа и воздуха на зажигание;
-
температуры зажигания слоя шихты, отходящих газов в последних вакуум-камерах, коллекторах агломашины, перед эксгаустерами, шихты перед барабанами-окомкователями;
-
разрежения в вакуум-камерах, коллекторе агломашины перед эксгаустерами;
-
толщина слоя агломерата на аглоленте.
Скорость движения аглоленты необходимо контролировать, т.к. равномерное распределение шихты по ширине аглоленты является одним из необходимых условий для нормального протекания процесса спекания. Если скорость аглоленты увеличится, то температура шихта к 11-14 вакуум-камерам может быть выше нормы, что ухудшает качество спекаемой шихты.
Контроль объемов расхода природного газа и воздуха на зажигание, т.к. необходимо равномерное зажигание шихты по аглоленте. Высокая температура факела, избыток тепла для зажигания вызывает плавление поверхности слоя и ухудшение его газопроницаемости. При низкой температуре зажигания получается плохо спеченная с малой прочностью верхняя часть «пирога».
Температура регулируется в ходе всего процесса спекания, т.к. от этого зависит качество спекаемой шихты.
АСУ ТП отделения спекания агломерата является подсистемой АСУ ТП агломерационного производства. В целом АСУ ТП должна обеспечивать за счет стабилизации и оптимизации технологического процесса:
-
повышение производительности агломашин;
-
повышение выхода годного агломерата;
-
снижение доли возврата в шихте;
-
повышение качества агломерационной шихты;
-
снижение удельного расхода шихты на окомкование и брак по окомкованию и спеканию;
-
уменьшение числа аварийных режимов работы;
-
улучшение условий труда обслуживающего персонала;
-
облегчение управления объектом.
4 СТРУКТУРА АСУТП процессом
спекания на аглофабрике
4.1 Обоснование выбора АСУТП
На структурной схеме отображают в общем виде основные решения проекта по функциональной, организационной и технической структурам АСУ ТП с соблюдением иерархии системы и взаимосвязей между технологическим объектом и комплексом технических средств (КТС) системы управления.
Многоуровневая структурная система управления обеспечивает надежность, оперативность, ремонтоспособность системы автоматизации, при этом легко решается оптимальный уровень централизации управления с минимальным количеством технологического контроля, управления и линий связи между ними.
Так как, процесс спекания является сложным технологическим процессом (дозирование и подача сыпучих материалов, режим зажигания, подача шихты системой конвейеров, процесс спекания агломерата, скорость аглоленты и т.д.), то целесообразно применять многоуровневую структуру управления супервизорного типа.
Супервизорная система с использованием средств локальной автоматики обеспечивает достаточно качественное управление для процессов с относительно небольшим количеством параметров и несложными алгоритмами выработки управляющих воздействий, а использование локальной автоматики уменьшает использование машинного времени ЭВМ, что целесообразно с экономических позиций: один компьютер можно использовать для управления несколькими АСУ, также возможно использование машинного времени для иных операций.
Под супервизорным понимается такой режим работы АСУ ТП, когда на нижних уровнях функционируют регуляторы, управляющие локальными контурами (на базе серийных электронных устройств или контроллеров), а на верхнем – ЭВМ, на которой реализованы задачи управления этими контурами через механизм выдачи управляющих воздействий на автоматические задатчики локальных контуров.
В дипломном проекте разработана система супервизорного типа. На высшем уровне ЭВМ, на низшем микроконтроллер. ЭВМ вырабатывает задание для микроконтроллера, а также осуществляет другие функции. Непосредственным управлением занят микроконтроллер. В данном случае ЭВМ может выполнять вычислительные функции АСУ отделения спекания, а также АСУ участка дозирования и даже АСУ ТП всей аглофабрики. Для обеспечения гибкости системы предусмотрены возможности перехода системы в полуавтоматический (ручное определение задания регулятору), а также ручной режим работы (ручное управление исполнительными механизмами).
4.2 Описание, выбранной системы АСУ
Структурная система АСУ ТП представлена в графической части дипломного проекта на листе 2 и представляет собой двухуровневую систему супервизорного типа, состоящую из следующих уровней:
1. Уровень измерительных средств и локальных средств контроля и регулирования. Состоит из датчиков, сигнализаторов значений параметров, источников питания. Он представляет собой уровень, на котором осуществляется контроль и регулирование параметров процесса при помощи средств контроля и регулирования, находящихся на объекте автоматизации. Все эти средства расположены непосредственно на объекте и на щитах участков КИПиА и представляют собой: первичные датчики, вторичные приборы, станции управления, цифровые регулирующие устройства (микроконтроллер). Также на этом уровне расположены средства диспетчерской связи и производственной громкоговорящей связи. На этом уровне система выполняет следующие функции: контроль параметров, измерительное преобразование, контроль и сигнализация измерительных параметров, выбор режимов работы, регистрация параметров, связь с объектом. На верхней ступени этого уровня находится оператор, который непосредственно контролирует и, если необходимо, регулирует определенные параметры процесса. В данном проекте на нижнем уровне находятся средства локальной автоматики – микроконтроллер, который выполняет функции регулятора и аналоговый вторичный прибор для оперативного отображения текущей информации на щите КИПиА. Для обеспечения гибкости системы предусмотрены возможности перехода системы в полуавтоматический (ручное определение задания регулятору), а также ручной режим работы (ручное управление исполнительными механизмами).
2. Уровень централизованных средств контроля и управления. На этом уровне происходит контроли и управление процессом централизованно, т.е. имеется возможность управлять несколькими технологическими объектами одновременно и решать дополнительные задачи связанные с обработкой данных. На этом уровне расположена ЭВМ, выполняющая следующие функции: ручной ввод данных, регистрация параметров на внешних запоминающих устройствах, моделирование работы объекта и выдача заданий на локальные регулирующие устройства, расчет показателей работы за смену на основании поступающих данных в течении смены, расчет технико-экономических показателей. На высшей ступени этого уровня располагается оператор, который и производит контроль за работой ЭВМ и вводит недостающие данные о работе агрегата. На данном уровне нет средств связи с объектом, т.к. всю необходимую информацию ЭВМ получает через модуль интерфейсной связи микроконтроллера в цифровом виде. Уровень АСУ связан с предыдущим уровнем при помощи диспетчерской связи и производственной громкоговорящей связи.
Данная структура позволяет системе гибко реагировать на выход из строя какого-либо элемента, для обеспечения непрерывности технологического процесса. При выходе из строя или нарушении связи с компьютером задание микроконтроллеру будет определено вручную. При выходе из строя или нарушении связи с микроконтроллером управление может осуществляться с помощью блока ручного управления.
Верхний уровень автоматизации
ЭВМ
нижний уровень автоматизации
микроконтроллер
агломашина
Рисунок 4.1 – Структура системы автоматизации
Таблица 4.1 – Условные обозначения технических средств на структурной схеме контроля и автоматизации
Обозначение | Наименование |
1 | 2 |
Д С СУ ИЦ ИА | Датчик-преобразователь Сигнализатор значений параметров процесса Станции управления исполнительными механизмами Индикатор цифровой Индикатор аналоговый |
Продолжение таблицы 4.1
1 | 2 |
Р РА КА ЗД ПР ВЗУ ВВУ УП ВТ ПРВ ДС ПГС УСО | Регуляторы Регистр аналоговый Командо-аппарат Задатчик Процессор Внешнее запоминающее устройство Вводно-выводное устройство Устройство печати Видеотерминал Пульт ручного ввода данных Диспетчерская связь Производственная громкоговорящая связь Устройство связи с объектом |
Таблица 4.2 – Условные обозначения функций системы автоматизации
Обозначение | Наименование |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | Контроль параметров Дистанционное управление исполнительным механизмом Измерения Контроль и сигнализация значений параметров Стабилизация параметров Выбор режима работы регулятора Ручной ввод данных Регистрация параметров Расчет ТЭП Учет производства и составление данных в смену Диагностика технологических линий Распределение технологических линий Оптимизация отдельных техпроцессов Анализ состояния техоборудования Прогнозирование основных показателей производства Оценка работы смены Контроль выполнения плановых заданий Контроль проведения ремонтов Подготовка, выдача информации в АСУ ТП Получение производственных ограничений от АСУ ТП |
5 ФУНКЦИОНАЛЬНАЯ СХЕМА АВТОМАТИЗАЦИИ
Функциональная схема автоматизации – основная схема проекта и показывает функционально-блочную структуру управления, а также степень оснащения объекта управления устройствами контроля и управления.
На функциональной схеме в дипломном проекте изображена система автоматизации процесса спекания агломерата на агломерационной фабрике ОАО «ММК им. Ильича» (лист 3).
В соответствии с поставленными задачами разработаны контуры:
-
автоматического контроля температуры в зажигательном горне;
-
автоматического регулирования температуры в зажигательном горне;
-
автоматического контроля температуры в коллекторе спекания;
-
автоматического контроля температуры в коллекторе охлаждения;
-
автоматического контроля температуры природного газа на аглокорпус;
-
автоматического контроля температуры в вакуумкамерах №16-21, 31;
-
автоматического контроля и регулирования законченности процесса спекания;
-
автоматического контроля температуры отходящих газов перед эксгаустером;
-
автоматического контроля температуры отходящих газов перед скрубберами;
-
автоматического контроля разрежения перед эксгаустером;
-
автоматического контроля разрежения в коллекторе спекания;
-
автоматического контроля разрежения в коллекторе охлаждения;
-
автоматического контроля разрежения в вакуумкамерах №1-17;
-
автоматического контроля давления природного газа в горн;
-
автоматического контроля давления воздуха в горн;
-
автоматического контроля расхода природного газа в горн;
-
автоматического контроля расхода природного газа на аглокорпус;
-
автоматического контроля расхода воздуха в горн;
-
автоматического регулирования соотношения «топливо-воздух»;
-
автоматического контроля уровня шихты в промбункере;
-
автоматического контроля скорости аглоленты;
-
аварийной сигнализации агломашины.
Рассмотрим более подробно разработанные контуры.