144046 (594018), страница 8
Текст из файла (страница 8)
На частной гранулометрической характеристике (рис. 22) наблюдается локальный максимум в области фракций 10–25 мм. Этот максимум объясняется исходными размерами крупного заполнителя (10–25 мм) – щебня, использованного при изготовлении модельных образцов. Крупный заполнитель является наиболее прочным компонентом в бетонных образцах и при взрыве он освобождается от скрепляющей песчано-цементной смеси.
При разрушении бетона вероятность выхода фракций, соответствующих размерам исходных частиц заполнителя больше вероятности появления вновь образовавшихся частиц.
2.3 Анализ гранулометрических характеристик продуктов электрического взрыва проводников из разных металлов
Во второй серии экспериментов исследовалось влияние материала проводников на характер разрушения бетона. В опытах использовались медные, нихромовые и манганиновые проводники диаметром 0,4 мм. Параметры ГИТ не изменялись.
Характеристики металлов:
Медь - мягкий, ковкий металл красного цвета, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Удельное электрическое сопротивление ρ=0,0172*10-6 Ом*м.
Манганин - МНМц-3-12 (80%Cu, 3%Ni, 12%Mn). Достаточно дешевый сплав, отличающийся высоким удельным сопротивлением ρ=0,43 -0,51*10-6 Ом*м.
Манганин основной материал для электроизмерительных приборов и образцовых сопротивлений — эталонов магазинов, мостовых схем, шунтов, дополнительных сопротивлений приборов высокого класса точности.
Нихром - общее название группы сплавов, состоящих, в зависимости от марки сплава, из 55—78 % никеля, 15—23 % хрома, с добавками марганца, кремния, железа, алюминия. Удельное электрическое сопротивление ρ=1,05-1,4*10-6 Ом*м.
На осциллограммах тока и напряжения наблюдается различие во времени начала взрыва проводников из разных материалов. Взрыв проводников из нихрома и манганина происходит в первом полупериоде разрядного тока, в то время как медный проводник взрывается во втором полупериоде.
Результаты – в таблицах 8,9 и на рисунках 23,24.
Таблица 8 - Суммарные характеристики крупности продуктов разрушения бетона при ЭВ различных проводников d=0,4 мм, %.
X,мм | медный | нихром. | манганинов. |
2,8 | 100 | 100 | 100 |
3,77 | 99,9 | 99,9 | 99,9 |
5,33 | 99,8 | 99,8 | 99,8 |
7,54 | 99,5 | 99,5 | 99,5 |
10,67 | 99 | 97,5 | 97 |
15,09 | 98 | 96 | 95 |
21,34 | 95 | 92 | 93,5 |
30,18 | 94 | 89 | 90,5 |
42,68 | 91 | 84 | 86 |
60,36 | 89,5 | 71 | 68,5 |
Рисунок 23 - Суммарные гранулометрические характеристики продуктов разрушения бетона при взрыве проводников из разных материалов
Таблица 9 - Частные характеристики крупности продуктов разрушения бетона в области от 2,2 до 45мм при ЭВ различных проводников, %.
X,мм | медные | нихром. | манганин. |
2,8 | 0,2 | 0,1 | 0,05 |
3,77 | 0,05 | 0,2 | 0,1 |
5,33 | 0,1 | 0,3 | 0,2 |
7,54 | 0,2 | 0,6 | 0,5 |
10,67 | 0,7 | 2 | 1,5 |
15,09 | 2,8 | 3,4 | 3 |
21,34 | 1,2 | 3,6 | 3,9 |
30,18 | 2,8 | 4,3 | 4,5 |
42,68 | 1,8 | 9,2 | 17,5 |
Рисунок 24 - Частные гранулометрические характеристики продуктов разрушения бетона при взрыве проводников из разных материалов
Как видно из рисунков 23, 24 и таблиц 8, 9, степень разрушения бетона зависит от материала взрываемого проводника. Для образцов с нихромовым и манганиновым проводниками характеристики имеют примерно одинаковый вид, с меньшей эффективностью разрушены кубики бетона с медным проводником диаметром 0,4 мм. Это подтверждают и результаты расчета вновь образованной поверхности S и среднего размера осколков D, приведенные в таблице.
Таблица 10 – Результаты расчета разрушения бетона с различным материалом взрываемого проводника.
Материал проводника | Диаметр проводника, мм | S, см2 | Dср, см |
медь | 0,4 | 443 | 5,4 |
нихром | 707 | 4,0 | |
манганин | 828 | 4,1 |
Выводы:
Приведены результаты экспериментальных исследований характера разрушения бетона при ЭВ медных, нихромовых и манганиновых проводников, размещенных в толще модельных образцов бетона.
Показано, что степень разрушения бетона, оцененная по гранулометрическим характеристикам продуктов разрушения, зависит от диаметра проводников. В режиме взрыва, используемого в опытах, эффективность разрушения бетона растет с уменьшением диаметра проводников.
Установлено, что степень разрушения бетона при взрыве проводников из высокоомных материалов выше, чем при взрыве медных проводников.
Эффективность дробления образцов с проводниками из высокоомных материалов (нихром, манганин) выше, чем при использовании медных проводников.
3. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ИССЛЕДОВАНИЯ РАЗРУШЕНИЯ БЕТОНА ЭЛЕКТРИЧЕСКИМ ВЗРЫВОМ ПРОВОДНИКОВ
Разработка новых современных технологий разрушения бетонных изделий с помощью ЭВП связана с теоретическими и экспериментальными исследованиями. Для хорошей технической подготовки инженеров-экологов лабораторное оборудование на кафедре должно соответствовать сегодняшним техническим достижениям. Целью выполнения работы является определение эффективности разрушения бетонных изделий с помощью ЭВП.
Для разработки лабораторных работ необходимо проведение технико-экономического обоснования. Это связано с необходимостью оценки объема работ и материальных вложений для реализации всего плана исследовательских работ, включающих в себя теоретическую проработку темы и проведение экспериментов.
3.1 Планирование работ
На первом этапе составляется календарный план, который устанавливает распределение ресурсов, наиболее эффективную расстановку кадров, сроки выполнения работ.
Перед тем как составить календарный план, необходимо определить перечень и последовательность отдельных операций, их вероятную трудоемкость.
Для того чтобы составить перечень выполняемых операций, необходимо установить оптимальное количество этапов разработки.
Задачей планирования работ является оптимальное распределение использования времени и ресурсов, обеспечивающее выполнение работ в срок при наименьших затратах средств.
Планирование работ заключается в следующем составление перечня работ назначение команды исполнителей установление продолжительности работ.
Необходимый штат для проведения данного проекта: научный руководитель, инженер-эколог.
Перечень проведенных работ и их продолжительность представлены в таблице 12.
Таблица 12 - Сроки выполнения работы
№ этапа | Наименование этапов | Количество исполнителей | Длительность выполнения, дни |
1 | Получение задания | И | 2 |
2 | Изучение литературы | И | 15 |
3 | Изучение методик | И | 7 |
4 | Изготовление объекта исследования | И | 5 |
5 | Настройка оборудования | П+И | 2 |
6 | Проведение экспериментов | П+И | 3 |
7 | Построение графиков | И | 3 |
8 | Обработка результата | И | 3 |
9 | Оформление графической части | И | 3 |
10 | Оформление работы | И | 11 |
Итого: | 54дня |
Условные обозначения:
И – инженер;
П – профессор.
На основании Таблицы 12 строим график занятости исполнителей.
Рисунок 21 - График занятости исполнителей
3.2 Затраты на проведение работ
Кпр = Uз/пл +Uс.н +Uам +Uпр + Uн+ Uмат
Uз/пл – затраты на оплату труда;
Uс.н – отчисление на социальные нужды (единый социальный налог);
Uам – амортизационные отчисления;
Uпр – прочие затраты;
Uн – накладные расходы;
Uмат – материальные затраты.