125591 (593134), страница 2
Текст из файла (страница 2)
Получение штуцерных отверстий не вызывает сомнений: техпроцесс их обработки минимален и альтернативы не имеет. Но последовательность обработки зеркала цилиндра далека от оптимального варианта:
-
зенкерование предварительное
-
зенкерование окончательное
-
развертывание
-
накатка.
Зенкрование ведется с двух сторон до середины зеркала (или, точнее, до 2-х отверстий 3 мм). Ранее в конструкции была предусмотрена канавка под выход этих отверстий в зеркало. Однако, в 1985 году канавка была из конструкции устранена. Ранее по этой канавке проходила граница двух частей отверстия, обрабатываемых двумя разными инструментами. Каждый инструмент образует свою поверхность с уводом оси от номинальной оси. Несоосность двух поверхностей порождает явную ступень, которая ранее из-за наличия в этом месте канавки была явно незаметна. Технологичнее было бы обрабатывать все отверстие одним инструментом. Это существенным образом повысило бы точность получения отверстия.
Анализ двух проблем позволяет предположить важность применения рассверливания и дальнейшего протягивания с одновременным дорнованием. Проблемой в этом случае является слишком большая длина отверстия (для протягивания).
1.6 Задачи проекта. Пути совершенствования техпроцесса
Следует заметить, что при разработке дипломного проекта не ставиться задача коренного изменения существующего базового техпроцесса (хотя это не исключается), если это не диктуется существенными условиями, например, резким увеличением производственной программы. Анализ существующего базового варианта техпроцесса может выявить нам дальнейшее направление модернизации или, даже, нового проектирования всего техпроцесса. В подавляющем большинстве случаев для повышения показателей эффективности техпроцесса или решения существующих проблем достаточно заменить две операции, перехода или изменить структуру техпроцесса.
В анализе базового техпроцесса замечены недостатки – низкое качество отверстия корпуса и низкая точность дальнейшего его получения.
Решение этих проблем и будет одним из основных направлений совершенствования техпроцесса.
2. Выбор и проектирование заготовки
2.1 Выбор способа получения заготовки
Изначально определяем, что заготовку корпуса главного цилиндра гидротормозов можно получить двумя способами: литьем в земляные формы и литьем в металлические армированные формы. Второй способ практически не используется для изготовления отливок из чугуна. Эти методы в одинаковой степени позволяют достичь заданной точности, однако себестоимости получения заготовок будут разными.
Оценку эффективности различных вариантов получения заготовок чаще всего проводят по двум показателям:
а) коэффициенту использования материала заготовки:
Ки = (2.1)
где q – масса детали, кг;
Q – масса заготовки, кг.
б) технологической себестоимости изготовления детали. Сюда включается только те статьи затрат, величины которых изменяются при переходе от одного варианта к другому.
На стадии проектирования технологических процессов оптимальный вариант заготовки, если известны массы заготовки и детали, можно определить путем сравнения технологической себестоимости изготовления детали, рассчитанной по формуле:
Ст = Сзаг*Q + Смех*(Q – q) – Сотх(Q –q) (2.2)
где Сзаг – базовая или конкретная стоимость одного кг заготовок, руб/кг.
Смех – стоимость механической обработки, отнесенная к одному кг срезаемой стружки, руб/кг.
Сотх – цена 1 кг отходов, руб/кг.
Смех = Сс + Ен*Ск (2.3)
где Сс – текущие затраты на 1 кг стружки, руб/кг.
Ск – капитальные затраты на 1 кг стружки, руб/кг.
По таблице 3.2 [3] для автомобильного и сельскохозяйственного машиностроения Сс =0,188 руб/кг, Ск = 0,273 руб/кг.
ЕН - нормальный коэффициент эффективности капитальных вложений Ен =0,15
Смех = 0,188+0,15*0,566 = 0,273 руб/кг.
Это значение принимаем и для литья в земляные формы и для литья в армированный кокиль.
Стоимость заготовки, полученной такими методами, как литье в песчаные и металлические формы, с достаточной для стадии проектирования точностью можно определить по формуле
Сзаг = Сотл *Кт*Кс*Кв*Км*Кп (2.4)
где Сотл – базовая стоимость одного кг литых заготовок. Для отливок полученных литьем в земляные и металлические формы Сотл равны Сотл1=0,29 руб/кг , Сотл2 = 0,29 руб/кг.
Кт – коэффициент, учитывающий материал отливок, для отливок из чугуна 2-ого класса точности Кт = 1,03 [3, стр.34].
Км – коэффициент, учитывающий материал отливки; для серого чугуна Км =1,09.
Кс – коэффициент, учитывающий группу сложности, по таблице 3.6[3] 3-я группа сложности; Кс = 1.
Кв – коэффициент, учитывающий объем производства. По таблице 3.9.[3] определяем группу серийности – 4-я. По табл. 3.8 [3] Кп = 1,2
Подставляем все известные значения в формулу 2.4 и получим:
Сзаг1 = Сзаг2 = 0,29*1,03*1,09*1,0*1,0*1,2 = 0,36 руб/кг
Рассчитаем технологическую себестоимость изготовления детали, если известно: q = 0,873 кг, Q = 1,35 кг. Сотх = 0,0144 руб/кг.
Ст1 = Ст2 = 0,36*1,35+0,273*(1,35-0,873)-0,0144(1,35-0,873) = 0,609 руб.
Стоимость только одной заготовки без учета механической обработки :
Сзаг1 = Сзаг2 = 0,36*1,35 = 0,486 руб.
Расчеты проведены в ценах 1985 года.
Для учета ценовой инфляции введем коэффициент к=10. Тогда стоимость заготовки Сзаг = 0,468*10 = 4,86 руб., а стоимость заготовки Сзаг = 6,09 руб.
Расчеты показали одинаковую стоимость получения отливки корпуса. Но мы остановимся на способе получения заготовки литьем в песчаные формы, т.к. этот способ обеспечивает более высокое качество отливки и однородность её структуры.
2.2 Проектирование отливки корпуса главного цилиндра гидротормозов
Проектирование отливки осуществляется по методике изложенной в [4].
Проектирование выполним по следующим этапам:
1. На основании выбранного способа литья по таблице 2.3. [4] определяем класс точности размеров и масс, а также ряд припусков. Для данного способа получения заготовки интервал классов точности размеров и масс с 6 по 11, интервал рядов припусков от 2 до 4.
Принимаем 7-ой класс точности размеров и масс и 2-ой ряд припусков (выбор объясняется требованиями массового производства).
2. По таблице 2.1 [4] исходя их данных таблицы 2.3 получим допуски, которые и сведем в таблицу 2.1
Таблица 2.1 Допуски на размер (7-ой класс)
Размер, мм | Величина допуска, мм | Размер, мм | Величина допуска, мм |
178,5 50,5 | 1,1 1,0 | 34,7 21 | 0,9 0,8 |
3. По таблице 2.2 [4] выбираем по соответствующему ряду припусков и по допускам на размер сами припуски и занесем их в таблицу 2.2
Таблица 2.2 Припуски на сторону
Допуск, мм | Припуск на сторону, мм | Допуск, мм | Припуск на сторону, мм |
0,6…0,8 0,8..1,0 | 1,3/1,8 1,4/2,0 | 1,0…1,2 1,2…1,6 | 1,6/2,4 2,0/2,8 |
По таблице 2.4 [4] выберем литейные радиусы, соответствующие данному номинальному размеру:
Номинальный размер, мм до 25 25…50 50…150 150…250 | Радиус, мм233,54 |
Опираясь на ранее принятые значения принимаем для данной заготовки :
-
ГОСТ26645-85
Определим коэффициент использования материала:
Ки = =0,65.
Коэффициент использования материала близок к нормативному по машиностроению Ки = 0,7… 0,85. Столь низкое значение (Ки = 0,65) объясняется увеличенным припуском на отверстие цилиндра в связи с низким качеством адсорбции слоя. Чертеж заготовки представлен на листе в графической части проекта.
3. Разработка схем базирования
Для успешного выполнения технологических операций механической обработки и сборки необходима правильная установка заготовок или деталей. В процессе установки решаются две различные задачи: базирование и закрепление заготовок.
Особое значение вопросы базирования приобретают при обработке заготовок в условиях массового производства с использованием настроенного оборудования.
Разработка схем базирования делится на три основных этапа:
-
Выбор черновых технологических баз.
-
Назначение чистовых технологических баз.
-
Разработка теоретических схем базирования.
При получении черновых технологических баз учитывают те условия, при которых обеспечивается заданная точность при минимуме припусков на обработку.
Это условие выполняется в том случае, если мы используем основные конструкторские базы (в нашем случае торец 3 и пов.2). Однако в нашем техпроцессе эти поверхности выполняются на 10-й операции, поэтому базирование вынуждены вести по единой базе – по наружной поверхности (литой) корпуса. Эта поверхность удовлетворяет требованиям для черновых баз:
-
достаточные размеры для закрепления
-
используется только на 1-ой операции
-
на поверхности отсутствуют приливы, литники, прибыли и т.д.
Схема базирования на первой операции представлена на рис.3.1.
Назначение чистовых технологических баз является многовариантной задачей. Оптимальный вариант можно отыскать только на анализе решений технологических размерных цепей. При этом должны соблюдаться принципы единства баз и соответствие конструкторских и технологических баз (по мере возможностей). На деталях типа корпус чистовые базы, как правило, готовят на черновых операциях и чистовые базы соответствуют конструкторским. Базирование по торцу поверхности 3 и по поверхности 2 осуществляется на всех последующих переходах.
Схема базирования на 020 – ой операции представлена на рис.3.2.
Рис. 3.1. Схема базирования на 010-ой операции
Рис. 3.2. Схема базирования на 020-ой операции
4. Разработка технологического маршрута и плана обработки. Выбор СТО
4.1 Разработка технологического маршрута и плана обработки
Согласно базовому техпроцессу изготовления корпуса гидравлических тормозов обработка ведется на автоматической линии "Альфинг" и окончательную обработку проходит на специальном станке "Альфинг": последовательность обработки каждой поверхности приведена в таблице 4.1
Маршрут обработки поверхностей
Таблица 4.1
№ поверхности | Квалитет точности | Шероховатость | Технические требования | Методы обработки | Последовательность операций | Последовательность позиций | Трудоемкость |
1 2 | 7 10 | 0,4 12,5 | - - | С,З,Р,НТ,ТЧ | 10,20,40 10 | 610,810,320, 520, 720 3-510 | 3,6 2,2 |
3 | 9 | 10 | - | Т,ТЧ | 10 | 3-510 | 2,2 |
4 | 10 | 12,5 | - | Т | 10 | 3-510 | 1 |
5 | 12 | 12,5 | - | Т | 10 | 3-510 | 1 |
6 | 10 | 12,5 | - | Т | 10 | 3-510 | 1 |
7 | 13-14 | 50 | - | - | - | - | - |
8 | 14 | 50 | - | - | - | - | - |
9 | 10 | 12,5 | - | Ф | 10 | 310 | 1 |
10 | 10 | 12,5 | - | Т | 10 | 910 | 1 |
11 | 8 | 12,5 | - | С,З1,З2 | 10 | 310,610, 910 | 2,8 |
12 | 8 | 12,5 | - | З1,З2 | 10 | 310,910 | 1,6 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
13 | 9 | 12,5 | С,З | 10 | 310,910 | 2 | |
14 | 10 | 12,5 | 0,05/8,5 | Т | 10 | 3-510 | 1 |
15 | 9 | 12,5 | С,З | 10 | 310,910 | 2 | |
16 | 6 | 5 | Р3 | 10 | 9-1010 | 1,5 | |
17 | 10 | 12,5 | С | 10 | 6-810 | 1 | |
18 | 10 | 12,5 | С | 10 | 6-810 | 1 | |
19 | 10 | 12,5 | Ф | 10 | 310 | 1 | |
20 | 10 | 2,5 | Т | 10 | 610 | 1 | |
21 | 10 | 12,5 | 0,05/7,5 | Р3 | 10 | 10-1110 | 1,5 |
22 | 6 | 5 | С,З | 10 | 12-1310 | 2,0 | |
23 | 10 | 12,5 | С | 10 | 6-1010 | 1 | |
24 | 10 | 12,5 | Т | 10 | 3-510 | 1 | |
25 | 10 | 12,5 | Т | 10 | 10-1110 | 1 | |
26 | 6 | 5 | Р3 | 10 | 12-1310 | 1 | |
27 | 10 | 12,5 | З | 20 | 3ого | 0,8 | |
28 | 10 | 12,5 | С | 20 | 3ого | 1 | |
29 | 9 | 5 | Ф,Фч | 20 | 3,5 | 2,5 | |
30 | 6 | 5 | 0,05/7,5 | Р3 | 20 | 7ого | 1,5 |
31 | 10 | 12,5 | З,С | 20 | 3 | 2,0 | |
32 | 8 | 5 | Ф,Фч | 20 | 3-5 | 2,5 |
В таблице :