125460 (593117), страница 8
Текст из файла (страница 8)
Если задаться некоторой величиной
, то при различных значениях
она будет достигнута через различные промежутки времени τ. Чем выше
, тем короче время, необходимое для достижения заданной величины
, и наоборот, хотя здесь нельзя установить строгой пропорциональности.
Иная картина наблюдается во II периоде, когда процесс релаксации идет с более или менее установившейся скоростью. Здесь влияние
на интенсивность релаксации напряжения практически отсутствует, во всяком случае, при температурах ниже 0,5 Тпл. Скорости релаксации при разных значениях
, как правило, весьма близки. Кривые σ—τ на втором участке подобны и эквидистантны, отличаясь лишь по взаимоположению относительно оси ординат, т. е. по уровню оставшихся в данный момент времени напряжений. Это хорошо иллюстрируется приведенным на рисунке 15 семейством первичных кривых релаксации жаропрочного никельхромового сплава при четырех значениях
.
При более высоких температурах (>0,5
) первичные кривые σ—τ часто утрачивают подобие, и скорости релаксации при разных значениях сто становятся непостоянными.
Зависимость оставшегося (конечного) напряжения
от начального определяется влиянием последнего на протекание процесса релаксации в обоих периодах. При температурах, не превышающих 0,5
, степень увеличения интенсивности процесса релаксации в I периоде за счет повышения величины
(в пределах до 0,8
) обычно такова, что в конечном счете более высокое начальное напряжение приводит к более высокому оставшемуся напряжению.
Взаимосвязь начального и оставшегося (конечного) напряжений (или начального напряжения и падения напряжения
) наиболее наглядно представлена графиками
—
и
—
рисунок16. Такие кривые строят для переменных значений времени релаксации τ (либо температуры t). При t=const,
const эта зависимость изображается пучком расходящихся прямых для разных значений τ, проходящих через нулевую точку осей координат рисунка 16.
Следует отметить, что начало пучка прямых в нулевой точке исключает понятие «условного предела релаксации» и возможность его графического определения. Более правильны схемы рисунок 16,в,г, где пучок прямых пересекается с осью начального напряжения в некоторой точке, отвечающей пределу релаксации.
Рисунок 16 - Схематические зависимости
= f (
) (а, в, д) и
= f (
) (б,г,е)
Не получило подтверждения и высказанное в свое время Я. С. Гинцбургом [15] положение, что зависимость
= f(
) подчиняется степенному закону и может быть описана уравнением
= a(
)р. В действительности при построении графиков
—
в двойной логарифмической системе координат в большинстве случаев не наблюдается прямолинейности кривых.
Приведенные выше экспериментальные данные и основные закономерности следует учитывать при выборе начальных напряжений для деталей, предназначенных для работы в условиях релаксации напряжений. Очевидно, что более высокие начальные напряжения, как правило, обеспечивают и более высокие значения оставшихся (конечных) напряжений.
Однако при этом величина
не должна превышать величину предела упругости материала при данной температуре. При назначении начальных напряжений в практике обычно ориентируются не на предел упругости, а на предел текучести
, допуская, как правило,
0.8
(за исключением особых случаев, о которых будет сказано ниже).
Таким образом, начальное напряжение релаксации зависит от уровня упругих свойств материала. Исходя из этого, некоторые авторы выражают
в долях от величин
или
, считая, что в случае необходимости сопоставить релаксационную стойкость ряда материалов целесообразно проводить сравнительные испытания не при одинаковых абсолютных значениях
, а при одинаковой величине отношения
/
(или
/
).
Такой подход, без сомнения, является правильным, так как позволяет более строго сопоставлять релаксационную стойкость серии материалов, сильно различающихся по своим механическим свойствам (
,
,
) в определенном диапазоне температур.
Л.П. Никитиной [13] предложена методика выбора начальных напряжений, основанная на изложенном принципе и дающая широкие возможности сравнительной оценки разнообразных материалов по их сопротивляемости релаксации напряжения при разных температурах, притом с затратой минимального числа образцов, а следовательно, и общего времени испытаний.
До сих пор мы рассматривали влияние начальных напряжений на зависимости
=f(
) либо
= f (
) при начальных напряжениях, не превышающих
(
), как это наблюдается в крепежных деталях.
В определенных условиях нередко отмечается релаксация при
, которая может реализоваться при растягивающих нагрузках (но не при испытаниях кольцевых образцов). Релаксация напряжений при
, например, наблюдалась в испытаниях на термическую усталость с выдержками при максимальной температуре цикла, а также в специальных опытах.
В этих условиях процесс релаксации напряжений при
характеризуется следующими особенностями.
При высоких температурах
снижается до
за короткое время, исчисляемое минутами; при нормальной и умеренно повышенных температурах действующее напряжение даже в течение весьма длительного времени может оставаться значительно больше
. Кроме того, наблюдается немонотонный характер зависимости
=f(
) при τ = const. Действительно, как было показано выше, кривые релаксации для разных
(больших
) могут пересекаться. Однако с увеличением времени эти кривые при сравнительно высоких температурах обычно сливаются в одну, мало отличающуюся от кривой, получаемой при
.
Следует иметь в виду, что при нормальной и умеренно высоких температурах, но при очень высоких
, существенно превосходящих
, может наблюдаться заметное упрочнение металла и повышение сопротивления релаксации за счет наклепа. В тех случаях, когда ненаклепанный металл обладает меньшим сопротивлением ползучести (релаксации), величина
при
может оказаться больше, чем при
.
3.2 Влияние времени на протекание процесса релаксации напряжений
Влияние времени на протекание процесса релаксации напряжений находится
в тесной зависимости от других факторов — начального напряжения и температуры, а также от структурной стабильности исследуемого сплава. Например, с повышением температуры влияние фактора времени усиливается.
Кривая релаксации в координатах напряжение — время (рисунок 15) отчетливо разбивается на два участка, отвечающих двум периодам релаксации. Первый период, продолжающийся в большинстве случаев весьма короткое время, характеризуется резким падением напряжения, чему отвечает ниспадающий участок аb.
Второй период релаксации, длительность которого намного больше первого, напротив, характеризуется весьма умеренной скоростью падения напряжения: релаксационная кривая на участке bс при большой длительности испытания приближается к оси абсцисс и в некоторых случаях она вообще затухает, т. е. выходит на горизонтальный участок.
Известно, немало попыток математического обобщения функциональной зависимости напряжения от времени. Например, И.А. Одингом были предложены следующие уравнения первого и второго периодов релаксации:
(56)
(57)
где k и р — постоянные коэффициенты, зависящие от свойств металла;
и
— начальные напряжения I и II периодов.
Аналитические уравнения этого типа имеют общий недостаток: они не отражают возможного влияния структурных превращений, происходящих у дисперсионно твердеющих сплавов при определенных температурах. Между тем развивающиеся во времени структурные превращения часто существенно влияют на характер процесса релаксации. Так, если у сильно дисперсионно твердеющих сплавов постоянство скорости релаксации устанавливается сравнительно быстро, то у слабо твердеющих сплавов стадия затухания скорости релаксации иногда длится тысячи часов. Структурная нестабильность испытуемых материалов проявляется и при изучении влияния времени на зависимости
=f(
) и
= f(
).
Продолжительность неустановившегося периода релаксации представляет существенный интерес, поскольку с этим связан практически важный вопрос о минимальной длительности опыта, достаточной для последующих экстраполяции. Изучение многочисленных первичных кривых релаксации показывает, что для стабильных при рабочей температуре материалов длительность начального периода обычно колеблется от 200 до 1000 ч. Однако для сплавов, у которых в процессе службы структурные превращения протекают медленно, неустановившийся период может продолжаться значительно большие сроки.
В связи с этим время испытаний на релаксацию материалов, предназначенных для длительной службы, в наших лабораториях составляет 1000—3000 ч. Значительно реже испытания на релаксацию при повышенных температурах доводят до 10—20 тыс. ч (т. е. До фактического срока службы крепежных деталей), а при нормальной температуре — до 50 тыс. ч. Результаты опытов столь большой длительности представляют большую ценность для проверки правильности экстраполяции по результатам менее длительных испытаний.
3.3 Влияние температуры на процесс релаксации напряжений
Влияние температуры на процесс релаксации напряжений в металлах и сплавах весьма велико. Аналогично ползучести различают релаксацию напряжений при низких (меньше 0,25
), средних (0,25
— 0,5
) и высоких (более 0,5
) температурах.















