115597 (592211), страница 6
Текст из файла (страница 6)
Используя формулу D(Х)=M(X)2-[М(Х)]2 можно найти дисперсию гораздо быстрее: .
Далее следует продолжить изучать статистику. Математическая статистика – это раздел математики, в котором изучаются методы сбора, систематизации и обработки результатов наблюдений массовых случайных явлений для выявления существующих закономерностей [21]. Необходимо основательно остановиться на изучении статистических характеристик и их практического применения. Рассмотреть понятия, составляющие суть выборочного метода в статистике (выборка, варианта и пр.). Также следует рассмотреть способы их графического представления.
В практике статистических наблюдений различают два вида наблюдений:
-
сплошное (изучаются все объекты);
-
выборочное (не сплошное, когда изучается часть объектов).
Примером сплошного наблюдения является перепись населения, охватывающее все население страны. Выборочными наблюдениями является, например, проводимые социологические исследования, охватывающие часть населения страны, области, района и т.д.
Вся подлежащая изучению совокупность объектов называется генеральной совокупностью. Часть объектов, которая отобрана для непосредственного изучения из генеральной совокупности, называется выборочной совокупностью или выборкой.
Числа объектов в генеральной или выборочной совокупности называют их объемами. Генеральная совокупность может иметь конечный и бесконечный объем.
Сущность выборочного метода состоит в том, чтобы по некоторой части генеральной совокупности (по выборке) выносить суждение о ее свойствах в целом. Обычно ограничиваются 5-10% всей изучаемой совокупности.
Так как в дальнейшем мы будем рассматривать выборочный метод, поэтому целесообразно выделить преимущества выборочного метода:
-
экономия затраты ресурсов;
-
единственно возможный в случае бесконечной генеральной совокупности или в случае, когда исследовании связано с уничтожением наблюдаемых объектов (например, исследование долговечности электрических лампочек и т.д.);
-
возможность углубленного исследования за счет расширения программы исследования при тех же затратах;
-
снижение ошибок регистрации;
-
неизбежные ошибки, возникающие в связи с изучением части объектов, могут быть заранее оценены и посредством правильной организации выборки сведены к незначимым величинам.
Между тем, использование сплошного наблюдения часто приводит к снижению точности наблюдения, а это у же вызывает неустранимые ошибки, и может привести к снижению точности сплошного наблюдения по сравнению с выборочным. Чтобы по данным выборки иметь возможность судить о генеральной совокупности, она должна быть отобрана случайно. На практике отбор может выполняться с помощью жеребьевки (лотереи) или с помощью случайных чисел.
Основной недостаток выборочного метода – ошибки исследования, называемые ошибками репрезентативности.
Выборка называется репрезентативной (представительной), если она достаточно хорошо воспроизводит генеральную совокупность. Виды выборок:
-
случайная выборка (случайный выбор элементов без расчленения на части или группы);
-
механическая выборка (элементы отбираются через определенный интервал);
-
типическая выборка (выбор случайным образом элементов из типических групп, на которые по некоторому признаку разбивается генеральная совокупность);
-
серийная выборка (случайным образом отбираются целые группы совокупности, а сами серии подвергаются сплошному наблюдению).
Способы образования выборки:
-
повторный выбор – каждый элемент, случайно отобранный и обследованный, возвращается в общую совокупность и может быть повторно отобран.
-
бесповторный отбор – когда обратный элемент не возвращается в общую совокупность.
Затем учащимся можно дать таблицу с основными характеристиками генеральной совокупности и выборки.
Наименование характеристики | Генеральная совокупность | Выборка |
Математическое ожидание |
|
|
Дисперсия |
|
|
Доля |
|
|
Здесь хi – значение признака; N и n – объемы генеральной и выборочной совокупностей; Ni и ni – число элементов генеральной и выборочной совокупностей со значением признака хi; M и m – число элементов генеральной и выборочной совокупностей, обладающих данным признаком.
На несложном примере покажем, как вычисляются введенные характеристики.
Генеральная совокупность задана таблицей распределения:
Xi | 2 | 4 | 5 | 6 |
Ni | 8 | 9 | 10 | 3 |
Найти дисперсию.
Важнейшей задачей выборочного метода является оценка параметров генеральной совокупности по данным выборки.
Далее введем понятие вариационного ряда. Для начала рассмотрим пример.
Необходимо изучить изменение результатов спортсменов, занимающихся легкой атлетикой, по сравнению с предыдущим годом. Получены следующие данные результатов в процентах к предыдущему году: 97,8; 97,10; 101,17;…;142,3;141,02.(всего 100 значений.).
Различные значения признака (случайной величины Х) называется вариантами (обозначаем их через х).
Первый шаг к осмыслению – упорядочивание. Расположение вариантов в порядке возрастания (убывания), т.е. ранжирование вариантов ряда.
Следующим шагом произведем группировку, то есть разобьем на отдельные интервалы. Число интервалов не следует брать большим. Числа показывающие, сколько раз встречаются варианты из данного интервала, называются частотами (ni), а отношение их к общему числу наблюдений частостями . Частоты и частости называют весами.
Составим таблицу.
Д | Результаты в процентах к предыдущему году х | Частота (количество спортсменов) ni | Частость (доля рабочих) | Накопленная частота niнак | Накопленная частость |
1 | 94,0-100 | 3 | 0,03 | 3 | 0,03 |
2 | 100,0-106,0 | 7 | 0,07 | 10 | 0,10 |
3 | 106,0-112,0 | 11 | 0,11 | 21 | 0,21 |
… | … | … | … | … | … |
8 | 136,0-142,0 | 2 | 0,02 | 100 | 1,00 |
100 | 1,00 |
Вариационным рядом называется ранжированный в порядке возрастания или убывания ряд вариантов с соответствующими им весами (частотами или частостями). Накопленная частота niнак показывает, сколько наблюдалось вариантов со значениями признака меньших х. Накопленная частость – отношение накопленной частоты к общему числу наблюдений: .
Теперь полученный вариационный ряд позволяет выявить закономерности.
Для задания вариационного ряда достаточно указать варианты и соответствующие им частоты или частости.
Аналогично с определением дискретной и непрерывной случайной величины, мы даем определение дискретного и непрерывного вариационного ряда.
Вариационный ряд называется дискретным, если любые его варианты отличаются на постоянную величину. Вариационный ряд называется непрерывным, если варианты могут отличаться один от другого на сколь угодно малую величину.
В примере мы привели непрерывный ряд.
Для графического изображения вариационного ряда используются:
-
полигон – служит для изображения дискретного вариационного ряда и представляет собой ломаную, в которой концы отрезков имеют (хi, ni);
-
гистограмма служит для изображения интервальных вариационных рядов и представляет собой ступенчатую фигуру из прямоугольников с основаниями, равными интервалам значений признака к=х2-х1. И высоты равные частотам. Если соединить середины верхних оснований прямоугольников отрезками прямой, то можно получить полигон того же распределения;
-
кумулятивная прямая (кумулята) – кривая накопленных частот. Для дискретных рядов кумулята представляет ломаную, соединяющую точки (хi, niнак ) или (хi, wiнак). Для интервального вариационного ряда ломаная начинается с точки, абсцисса, которой равна началу первого интервала, а ордината – накопленной частоте, равной нулю. Другие точки соответствуют концам интервалов.
Теперь переходим еще к одной важной теме – проверка статистических гипотез. Сформулируем принцип практической уверенности. Если вероятность события А в данном испытании очень мала, то при однократном выполнении испытания можно быть уверенным в том, что событие А не произойдет, и в практической деятельности вести себя так, как будто событие А вообще невозможно.
Отправляясь самолетом в другой город, мы не рассчитываем на возможность погибнуть в авиа катастрофе, хотя вероятность такого события имеется.
При многократном повторении испытаний мы не можем считать маловероятное событие А практически невозможным.
Статистической гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.
Проверяемую гипотезу обычно называют нулевой и обозначают Н0. Также рассматривают альтернативную (конкурирующую гипотезу) Н1, являющуюся отрицанием Н0.
Суть проверки статистической гипотезы состоит в вычислении статистики данной выборки. Затем по выборочному распределению определятся критическое значение. Если статистика больше критического значения, то событие можно считать практически невозможным.
Сравнение двух совокупностей имеет важное практическое значение. На практике часто встречается случай, когда средний результат одной серии эксперимента отличается от среднего результата другой серии.
В промышленности данная задача возникает при выборочном контроле качества изделий, изготовленных на разных установках или при различных технологических режимах.
Рассмотрим, как проверятся гипотеза.