115597 (592211), страница 4
Текст из файла (страница 4)
В таком случае вероятность можно вычислить, как отношение числа случаев благоприятствующих появлению события А (то есть m), к общему числу всех исходов n: .
Данная формула представляет собой определение вероятности по Лапласу, которое пришло из области азартных игр, где теория вероятностей применялась для определения перспективы выигрыша.
После рассмотрения простейших примеров вычисления вероятности учащимся может показаться, что вычисление вероятностей любого события не вызывает особого труда, поэтому учителю нужно предостеречь учащихся от ошибок. Для этого учащимся может быть предложен следующий алгоритм при решении задач на нахождение вероятности.
-
Перечислить возможные исходы опыта (полное или частичное).
-
Обосновать равновозможность перечисленных исходов (можно опираться на прямые указания в тексте задачи: случайно, наугад и т.д.).
-
Вычислить общее количество исходов (то есть число n).
-
Описать благоприятные исходы для данного события и вычислить их количество.
-
Вычислить вероятность по формуле.
-
Оценить полученный результат.
На первых этапах следует предлагать задачи, в которых число исходов опыта можно пересчитать вручную, без использования формул комбинаторики. После получения ответа необходимо обсудить с учащимися его реальный смысл. Выяснить совпадает ли полученная величина с интуитивным представлением учеников о вероятности, удовлетворяет ли основным свойствам.
Для того чтобы определить вероятность нужно знать количество исходов, а также количество благоприятных исходов. Если количество испытаний мало, то можно вручную перебрать все исходы и выявить среди них благоприятные. Что делать в том случае, если количество испытаний велико?
В таком случае на помощь приходит комбинаторика.
Комбинаторика – раздел математики, который изучает различные комбинации и перестановки предметов [5]. Начинать изучение комбинаторики следует с введения простейших формул. Перед тем как дать ученикам формулу следует поставить какую-либо проблемную задачу, например, перед тем как дать учащимся формулу перестановок можно дать решить следующую задачу.
Сколько чисел можно составить из цифр 1, 2, 3?
Решая данную задачу систематическим перебором, мы найдем, что количество таких чисел будет равно шести. Далее следует изменить условие задачи, увеличив количество цифр до 10. И сказать, что решать данную задачу перебором нерационально, так как на это уйдет слишком много времени. Для решения задач такого вида используется следующая теорема.
Пусть имеется, k групп элементов, причем каждая группа элементов содержит определенное количество элементов, например, 1-ая содержит n1 элемент, 2-ая группа – n2 элементов, тогда i-я группа содержит ni элементов. Тогда общее число N способов, которыми можно произвести такой выбор, равняется .
Учитель должен обратить внимание учащихся на то, что правило умножения подсчитывает упорядоченные наборы, то есть порядок в них важен.
Данную формулу можно применить к решению следующей задачи.
Сколько существует пятизначных натуральных чисел.
Решение. Как известно всего 10 цифр. Представим пятизначное число, как, где вместо первой звездочки можно подставить все цифры кроме 0, так как если подставим 0, то получим четырехзначное число (нам надо пятизначное). Вместо второй звездочки можно подставить любую из 10 цифр, аналогично вместо оставшихся можно подставлять любую из 10 цифр. Таким образом, у нас имеется 5 групп элементов, первая группа содержит 9 элементов, а оставшиеся 4 группы содержать по 10 элементов. Тогда, используя формулу, найдем количество пятизначных чисел: .
Нужно дать несколько упражнений на вычисление выражений с факториалами, чтобы учащиеся лучше овладели навыками работы с ними.
Далее рассматривается теорема о выборе с учетом порядка.
Общее количество выбора k элементов из n элементов с учетом порядка определяется формулой и называется числом размещений из n элементов по k элементов.
Приведем пример.
В областных соревнованиях по футболу участвует 8 команд. Требуется определить сколькими способами можно составить группу их 4 команд.
Другими словами, нам нужно выбрать 4 футбольных команды из 8 команд, то есть: .
Далее рассматривается теорема о выборе без учета порядка.
Общее количество выборок в схеме выбора k элементов из n без возвращения и без учета порядка определяется формулой и называется числом сочетаний из n элементов по k элементов.
Рассмотрим пример.
На занятии по физкультуре присутствовало 20 человек. Учитель попросил двух человек принести из раздевалки мячи. Сколькими способами можно выбрать учеников, для того чтобы они принесли мячи?
Решение. Порядок в котором будут выбраны ученики не существенен, следовательно: способов.
После изучения основных формул комбинаторики следует дать учащимся задачи на вычисление вероятности, для решения которых необходимо применять комбинаторные формулы.
Далее вводим основные операции над событиями. При введении не следует пользоваться кругами Эйлера, так как учащиеся мало знакомы с теорией множеств. После определения операции можно привести пример описывающий данную операцию.
Событие С называется суммой А+В, которое представляет собой событие, состоящее из появлении хотя бы одного из событий А и В.
Бросается кубик. Событие А – выпадет число 2. Событие В – выпадет нечетное число. Тогда событие С=А+В. Будет состоять в выпадении двойки или нечетного числа.
Событие C называется произведением A и B, если оно состоит из всех событий, входящих и в A, и в B.
С=А∙В (А – выпадет 3, В – выпадет нечетное число). Тогда С состоит в выпадении только числа 3, так как 3 является нечетным числом.
Противоположным событию A, называется событие, состоящее в непоявлении события А. Обозначается противоположное событие символом .
Противоположными событиями являются промах и попадание при выстреле, или выпадении герба или цифры при одном подбрасывании монеты.
Далее дадим определения совместных, несовместных событий и зависимых, независимых событий.
События A и B называются несовместными, если они не могут произойти в результате одного испытания. События А и В называются совместными, если они могут произойти в результате одного испытания.
Здесь также следует рассмотреть примеры, для лучшего усвоения этих понятий.
Испытание – один раз подбрасываем монету. События: А – выпадет орел; В – выпадет решка. События А и В несовместны, так как при подбрасывании одной монеты одновременно не выпадет орел и решка.
Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Уточним понятие независимых событий. Будем бросать две монеты и обозначим как событие A тот факт, что первая монета упадет гербом, событие B – вторая монета упадет гербом, событие C – на одной (и только на одной) монете выпадет герб. Тогда события A, B, C попарно независимы, но два из них полностью определяют третье. Действительно, A и B независимы, так как результаты второго броска никак не зависят от первого броска, A и C (а также B и C) могут показаться зависимыми, но перебором вариантов можно получить, что , значит, они по определению независимые. С другой стороны, легко убедиться, что любые два события однозначно определяют третье.
На этом примере хорошо видно, что события могут быть попарно независимы, но зависимы в совокупности.
Изучив основные операции над событиями, можно перейти к вероятности. А именно привести основные правила, позволяющие определить вероятность появления сложного события, состоящего из более простых событий, вероятность которых нам известна.
Вероятность достоверного события равна единице: Р(E) = 1.
Вероятность суммы несовместных событий равна сумме их вероятностей: Р(А1+ А2+…+ Аn) = Р(А1)+Р(А2)+…+Р(Аn).
Эти два равенства являются аксиомами, то есть не требуют доказательства. На основе этих равенств строится вся теория вероятностей. Приведенные ниже формулы можно вывести при помощи этих аксиом.
Вероятность невозможного события равна 0: Р(Ø) = 0.
Вероятность противоположного события равна: Р(Ā) = 1 – Р(А).
Вероятность суммы произвольных событий равна сумме их вероятностей без вероятности произведения событий: Р(А+В)=Р(А)+Р(В)–Р(АВ).
Теперь вспомним определения независимых событий.
Событие А и В называются независимыми, если Р(АВ)=Р(А)Р(В).
На практике часто путают независимые и несовместные события, это разные понятия. Другими словами можно сказать, если события связаны независимыми экспериментами, то и сами события будут независимыми.
Показать применение изученных правил можно при решении следующей задачи.
На соревнованиях по стрельбе из лука три стрелка сделали по одному выстрелу по мишени. Вероятность попадания в мишень для одного из стрелков равна 0,6, для другого – 0,7, для третьего – 0,93. Найти вероятность того, что: а) хотя бы один из стрелков попадет в мишень; б) только один из стрелков попадет в мишень; в) ни один из стрелков не попадет в мишень.
Решение. Пусть событие А – первый стрелок попал в мишень, тогда Р(A)=0,6; Событие В – второй стрелок попал в мишень, тогда Р(В)=0,7; Событие С – третий стрелок попал в мишень, тогда Р(С)=0,93.
В данной задаче все события являются независимыми, так как стреляют, независимо друг от друга.
а) Пусть событие S – хотя бы один из стрелков попадет в мишень. Вспомним определение суммы событий: событие С называется суммой А+В, которое представляет собой событие, состоящее из появлении хотя бы одного из событий А и В. Данное определение можно применить и к большему числу событий. Следовательно событие S=А+В+С. То есть нам нужно найти Р(А+В+С). А так как все события независимые то, применяя формулу суммы и произведения независимых событий, получаем:
Р(А+В+С)=Р(А)+Р(В)+Р(С)-Р(АВ)-Р(АС)-Р(ВС)+Р(АВС)=0,99.
б) Пусть событие S – только один из стрелков попадет в мишень. Данное событие можно представить как сумму следующих событий: . Рассмотрим подробно событие
, но для начала вспомним определение произведения событий: событие C называется произведением A и B, если оно состоит из всех событий, входящих и в A, и в B. Итак, событие
означает, что первый игрок попадет, а два других промажут, аналогично рассматриваются два других слагаемых. Данные слагаемые является несовместным, так как появление одного из них исключает появление двух других. Значит можно применить формулу суммы несовместных событий, а затем формулу произведения независимых событий:
Р( )=Р(
)+Р(
)+Р(
)=
= Р(А)Р( )Р(
)+Р(
)Р(В)Р(
)+Р(
)Р(
)Р(С)
Однако такую вероятность можно вычислить легче. Вспомним, как вычисляется вероятность противоположного события: Р(Ā)=1–Р(А). Применив данную формулу, вычислим вероятность и в итоге получим, что
Р( ) = 0,1438.
в) Составим отрицание к событию, рассматриваемому в пункте а). Если событие S – хотя бы один из стрелков попадет в мишень, то тогда – ни один из стрелков не попадет в мишень. Следовательно для решении данной задачи требуется найти Р(
). Вычислим при помощи формулы противоположного события: Р(
)=1 – Р(
)=1 – 0,99 = 0,01.
Возникает вопрос, как вычислять вероятность зависимого события. То есть вероятность события, при условии, что другое событие уже произошло. Для этого ввели понятие условной вероятности.
Условной вероятностью события А, при условии, что уже произошло событие В, называется отношение вероятностей P(АВ) к Р(А) и обозначается :
.