114010 (591556), страница 4

Файл №591556 114010 (Розвиток умінь розв’язувати задач на пропорційне ділення у початковій школі) 4 страница114010 (591556) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Мета використання ілюстрації — виявити величини, про які йдеться в задачі, та з'ясувати зв'язки між ними. Предметна ілюстрація допомагає створити уявлення про життєву ситуацію, описану в задачі, і тим самим сприяє правильному вибору дій та їх послідовності. Ілюстрація у вигляді короткого запису (схематичного, табличного) чи рисунка фіксує у зручній для сприймання формі величини (дані і шукані) допомагає розкрити залежності; між ними. У знаходженні неявної залежності між запитанням задачі і даними полягає інтерес дітей до процесу; розв'язування задач, а це, в свою чергу, сприяє їхньому розвитку мислення. Тому недоцільно намагатися якомога частіше розкривати зв'язки в задачах за допомогою короткого запису чи застосування іншої наочності.

Розв'язувати задачі з використанням короткого запису слід у таких випадках:

  • при початковому розв'язуванні простих задач, коли цей процес є ще, по суті, переходом від операцій над і множинами предметів до арифметичних дій над натуральними числами;

  • при розв'язуванні простих і складених задач з метою формування в учнів уявлення про структуру задачі;

  • при використанні задач для формування математичних понять, ознайомлення учнів з елементами арифметичної теорії чи залежностями між величинами;

  • при початковому ознайомленні учнів з задачею нового виду (і то не завжди), а також тоді, коли багато учнів не можуть самостійно розв'язати задачу [9, 213].

Учнів треба поступово привчати виконувати короткий запис задачі. У першому класі наслідують зразок учителя. Як самостійну роботу на уроці можна практикувати запис даних у задану схему. Вдома першокласники розв'язують задачу без короткого її запису. У 3-4 класах учитель дає не тільки зразки чи опорні схеми коротких записів, а й ознайомлює дітей з деякими рекомендаціями щодо їх виконання.

Наприклад:

У дівчинки було 5 книжок. Їй подарували ще кілька книжок. У неї стало 9 книжок. Скільки книжок подарували дівчинці?

Короткий запис:

Було – доданок – 5 книжок.

Подарували – доданок – ?

Стало – сума – 9 книжок.

Під час розв’язання учні міркують так: У цій задачі нам відомі сума і один доданок. Щоб визначити другий доданок (Скільки книжок подарували?), треба від суми відняти відомий доданок.

Віднімаємо: 9 – 5 = 4 (книжок).

Перевірка: віднімання перевіряємо дією додавання. Щоб перевірити, чи правильно ми розв’язали задачу, треба додати до відомого доданка той, що ми знайшли. Якщо одержимо відому суму, то задачу ми розв’язали правильно. Додаємо: 4 + 5 = 9 (книжок).

Отже, цю задачу ми розв’язали правильно, бо одержали відому суму.

Відповідь: дівчинці подарували 4 книжки.

Така організація навчання аж ніяк не переобтяжує пам’ять дітей, навпаки, вона полегшує формування умінь розв’язувати задачі, тому що кожен учень усвідомлює, чому цю задачу слід розв’язувати саме так.

Учні повинні знати, що в короткому записі треба використовувати слова, які визначають дію або залежність між даними і шуканою величинами. Зв'язані між собою дані слід записувати в одному рядку; число, яке є сумою кількох даних, записувати справа або зліва від них і відокремлювати рискою; запитання задачі позначати знаком запитання. У табличній формі два значення тієї самої величини треба записувати одне під одним [33, 45].

Умову задачі можна коротко записати в таблиці, або у формі креслення. Наприклад:

Задача 1. Зібрали 100 кг яблук, а груш на 20 кг більше, ніж яблук. Скільки кілограмів яблук і груш зібрали?

Я блук – 100 кг?

Груш – на 20 кг більше

Задача 2. Автомобіль використав за 4 год роботи 36 л бензину. Скільки літрів бензину потрібно для автомобіля на 8 годин роботи при тій самій нормі витрати за годину?

Норма витрати бензину

Час роботи

Загальна витрата бензину

однакова

4 год

8 год

36 л

?

3. Розв'язання задачі. Розв'язання задачі — це виконання арифметичних дій відповідно до складеного плану. Планом користуються і тоді, коли задачу розв'язують за допомогою складання виразу чи рівняння.

Виконуючи дії, учні коментують їх: що знайдено за допомогою кожної дії. При усному розв'язуванні задачі необов'язково щоразу називати питання плану повністю. Можна практикувати короткі коментарі.

Якщо задачу розв'язують письмово, то необхідні пояснення чи запитання учні можуть повідомляти усно або письмово. Обсяг письмових пояснень збільшується в міру оволодіння навичками письма. З різними формами пояснень учитель ознайомлює дітей поступово [24, 31].

Розв'язок задачі буває правильним і неправильним, точним і наближеним, загальним і частинним. Розв'язання кожної задачі повинно бути: 1) безпомилковим; 2) обгрунтованним; 3) повним; 4) раціональним.

4. Перевірка розв'язання та обґрунтування доведень є складовою частиною і характерною рисою математичної діяльності. Учням молодших класів ще важко відчувати потребу в обґрунтуванні своїх суджень. Тому перевірку розв'язання задачі вони сприймають лише як вимогу вчителя.

Перевірити розв'язання задачі — це з'ясувати, правильне воно чи ні. Для вчителя цей процес є засобом виявлення прогалин у знаннях учнів, а в поєднанні з аналізом та оцінкою — засобом виховання інтересу до вивчення математики. Проте така перевірка не вичерпує всієї проблеми. Треба поступово виховувати в дітей почуття необхідності самоперевірки, ознайомлювати їх із найбільш доступними прийомами перевірки. З цією метою слід проводити бесіди, в яких аналізувати допущені учнями помилки. Під час таких бесід розкривати особливість математики як науки, її роль у народному господарстві і в житті кожної людини, розповідати, як учені-математики та інші фахівці дбають про правильність результатів, аналізувати, до яких негативних наслідків можуть призвести допущені у розв'язанні задачі помилки [18, 19].

Що стосується сутності поняття “вміння розв’язувати текстові задачі”, його зв’язок із знаннями і навичками, то під вмінням розуміємо готовність і здатність учнів початкової школи самостійно і свідомо розв’язувати ці задачі. В процесі навчання математики доцільно виділяти окремі й узагальнені вміння. До окремих вмінь відносять вміння розв’язувати задачі певного виду. Якщо учень переносить засвоєні дії на нові види задач, правильно і самостійно розв’язує текстові задачі широкого кола, то відповідні вміння є узагальненими. Кінцевим результатом навчання є узагальнені вміння.

Загальне вміння розв’язувати текстову задачу утворює складний комплекс, що включає активне оперування математичними знаннями і відповідними вміннями й навичками, досвід у застосуванні знань і певну сукупність розумових дій, які необхідні для розв’язання [60, 47].

Вироблення вмінь учнів початкової школи розв’язувати текстові задачі передбачає ознайомлення їх із поняттям ”текстова задача” і процесом її розв’язування; ознайомлення учнів із структурними компонентами задачі (умова, вимога, дані відомі, невідомі, шукані), їх особливостями (умова і вимога зв’язані між собою; в умові має бути не менше двох числових даних, зв’язаних між собою і з шуканим; вимога виступає орієнтиром пошуку розв’язування; вибір дій відбувається шляхом встановлення взаємозв’язків між даними і шуканими та ін.).

У тісному зв’язку із знаннями предметом цілеспрямованого формування є вміння виділяти складові компоненти в тексті задачі, встановлювати повноту, обґрунтовувати правильність (неправильність) побудови текстової задачі, переформульовувати і самостійно їх складати.

На підставі визначених теоретичних основ нами удосконалена методика формування загального уміння розв’язувати складені задачі, в якій визначено мету і зміст кожного з зазначених етапів. На відміну від чинних підручників, ми пропонуємо проводити цілеспрямовану підготовку до введення поняття про складену задачу. На етапі підготовчої роботи засобом спеціальних завдань у дітей формуються уявлення: про те, що за двома певними числовими даними можна відповісти на кілька запитань; про те, що різні задачі можуть мати однакові розв’язання; про неможливість відповісти на запитання задачі, якщо числових даних бракує; про необхідність вибору числових даних для відповіді на запитання задачі; про існування задач, на запитання яких не можна відповісти одразу; про існування задач, що складаються з двох простих задач, які пов’язані за змістом; про те, що аналіз може складатися з двох циклів – кожний з яких відповідає певній з двох простих задач [23, 53].

Традиційно ознайомлення з поняттям “складена задача” здійснюється в 2-му класі на задачах на знаходження остачі, й ці задачі пропонуються учням майже протягом усієї теми. Але учні запам’ятовують спосіб розв’язування і при розв’язуванні нової задачі наслідують його, не звертаючись до розгорнених міркувань. Тому ознайомлення з поняттям “складена задача” та процесом її розв’язування проводиться на різноманітних математичних структурах задач. Такий підхід спонукає учнів до засвоєння дій з розв’язування задачі, а не до заучування плану розв’язування [35, 3].

Формування поняття про складену задачу та ознайомлення з процесом розв’язування складених задач здійснюється за допомогою порівняння задачі з двома запитаннями та відповідної складеної задачі; порівняння простої та складеної задач, які мають однакові умови; вибору необхідних і достатніх ознак для розпізнавання складеної задачі; підведення під поняття “складена задача”; виведення наслідків про належність або неналежність задачі до поняття “складена задача”. Спеціально опрацьовується уміння виконувати аналітичний пошук розв’язування задачі – спочатку до задач подаються готові схеми аналізу, потім – діти повинні самостійно заповнити схему аналізу на картці з друкованою основою, а далі складають її самі. Аналогічно формується вміння розбивати складену задачу на прості та визначати порядок розв’язування простих задач.

Істотним в організації діяльності учнів на етапі ознайомлення з поняттям “складена задача” (або “задача”) є її спрямованість не на розв’язання кожної конкретної задачі, а на оволодіння комплексом умінь, на оволодіння цим поняттям [49, 74].

Формування загального вміння розв’язувати складені задачі реалізується за допомогою систем навчальних задач для 2-го-4-го класів. Навчання розв’язувати складені задачі доцільно здійснювати на різноманітних математичних структурах задач, не зосереджуючись на відпрацюванні розв’язання задачі певної структури. Істотним у методиці ознайомлення із задачами нової математичної структури є введення їх на основі або порівняння зі схожими простими задачами, або на основі продовження сюжету простої задачі, або на основі зміни запитання простої задачі до даної умови, або на основі зміни умови або запитання складеної задачі відомої математичної структури.

Таким чином, досліджується вплив цих змін на розв’язування задачі; задачі нової математичної структури зіставляються з задачами вже відомими, що полегшує їх засвоєння. Крім того, застосовується й такий методичний прийом, коли задача нової структури подається без зіставлення з відомими структурами, що спонукає відтворення повного складу дій, які містить загальне уміння розв’язувати складені задачі.

При формуванні вміння розв’язувати складені задачі в 2-му – 4-му класах учням пропонуються складені задачі різноманітних математичних структур. У 3-му класі проводиться робота з узагальнення поняття “складена задача”, а також математичних структур складених задач на знаходження суми, різниці тощо, школярі вчаться складати обернені задачі; розпочинає формуватися дія синтетичного пошуку розв’язування задачі [18, 21].

На матеріалі задач з пропорційними величинами, на знаходження суми чи різницеве (кратне) порівняння двох добутків або часток основна увага приділяється опрацюванню дій визначення істотних ознак та узагальнення математичної структури і способу розв’язування задач. Дослідження задач відбувається за такими факторами: за зміною групи пропорційних величин; за зміною числових даних; за зміною шуканих задачі; за зміною співвідношень, що задані в задачі: сума значень величини замінюється їх різницевим, а потім й кратним співвідношенням; за зміною величин, для значень яких дано або треба знайти суму, різницеве чи кратне відношення; визначивши вплив цих змін на план розв’язування задач, ми виділяємо істотні ознаки математичних структур задач та узагальнюємо плани їх розв’язування [4, 41].

Усе це слід ураховувати, навчаючи дітей розв’язувати задачі. Один з істотних моментів цього навчання полягає в тому, щоб діти навчилися самостійно виконувати первинний аналіз тексту задачі, відділяючи відоме від невідомого. Важливо, щоб вони вміли не тільки вичленити із задачі числові дані, а й пояснити, що означає кожне з них у контексті, що сказано про те число, яке треба знайти, і т.д. Важливо, щоб у процесі первинного аналізу зверталася увага не лише на виділення даних і шуканого, а й на зв’язки між ними, викладені в тексті задачі.

РОЗДІЛ 2. МЕТОДИЧНА РОБОТА НАД ЗАДАЧАМИ НА ПРОПОРЦІЙНЕ ДІЛЕННЯ

2.1 Види задач на пропорційне ділення та способи їх опрацювання

Задачі, пов’язані з пропорційними величинами, належать до типових задач. Серед типових є задачі на знаходження четвертого пропорційного (на спосіб прямого і оберненого зведення до одиниці та спосіб відношень), на пропорційне ділення, на знаходження числа за двома різницями.

Характеристики

Тип файла
Документ
Размер
4,41 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6933
Авторов
на СтудИзбе
266
Средний доход
с одного платного файла
Обучение Подробнее