104411 (590857), страница 7

Файл №590857 104411 (Кадры в сфере услуг и их роль в системе менеджмента) 7 страница104411 (590857) страница 72016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Проверка гипотезы о равенстве средних

Первая переменная: Выработка Ктек

оценка среднего 1.4е+02 1.8

оценка дисперсии 3.2е+03 0.29

Вторая переменная:

оценка среднего 82 2.7

оценка дисперсии 92 0.011

t – расчетное 1.8 2.1

t – табличное 1.7 1.7

число степеней свободы 23 23

вероятностный уровень 0.95 0.95

Гипотеза об отсутствии тренда отвергается отвергается

Метод Форстера-Стюарта

Гипотеза об отсутствии тренда отвергается отвергается

После того, как установлено наличие тенденции в ряду динамики, производится ее описание, т.е. определяется тип протекания процесса, имеющего место в данном явлении, направление роста и изменения, происходящего в нем.

По данным таблицы 2.4. можно заметить, что динамика производительности труда определяется: по наличию и стремлению к некоторой предельной величине, как процесс, не имеющий предел насыщения; по наличию экстремальных значений и перегибов, как процесс, имеющий переходы от возрастания к убыванию или наоборот.

Для отображения основной тенденции развития модели выработки на одного работника применялось уравнение полинома третьей степени, для модели коэффициента текучести персонала - уравнение логистической кривой, расчеты велись по данным за 2002-2008гг., с применением пакетов OLYMP и MESOSAUR. Результаты вычислений приведены в Приложении А.

Таким образом, модель эффективности управления персоналом приобрела следующий вид:

YКтек (t) = 2.7138 / (1 + exp (1.0832 - 0.31457* t));

YВыр(t) = 278 - 34.8 * t + 2.06 * t2 - 0.0404 * t3.

Также следует проверить модель на наличие автокорреляции в отклонениях фактических уровней ряда динамики от тренда. Самым распространенным методом для этих целей служит критерий Дарбина-Уотсона.

Полученные в результате расчетов значения dвыр=1,886, dКтек=2,502 превышают табличные d2=1,66 (для 5%-ного уровня значимости), что свидетельствует об отсутствии автокорреляции.

Определяемые в анализе рядов динамики показатели изменения уровней, тренда, сезонной волны имеют широкое применение при прогнозировании, т.е. при получении статистической оценки возможной меры развития социально-экономических явлений на будущее.

Представим результаты вычислений в виде графиков, характеризующих динамику изменений средней выработки и коэффициента текучести персонала за 2002-2008гг., а также непосредственно выделим тренд с экстраполяцией полученных результатов (Рис. 2.4), это позволит наглядно представить закономерности происходящих процессов.

Рис. 2.4. Динамика показателей средней выработки и коэффициента текучести по кварталам за 2002-2008гг.

Однако прогноз по аналитическому выражению тренда имеет существенный недостаток, который приводит иногда к большим ошибкам при прогнозировании явления. Чтобы избежать этой ошибки и сделать прогноз более точным, необходимо отыскать закономерность изменения во времени случайного компонента.

Для прогнозирования показателей эффективности управления персоналом, выберем метод экспоненциального сглаживания. Данный метод эффективен для краткосрочных прогнозов.

Наиболее адекватная модель эффективности управления персоналом получилась при логарифмическом преобразовании и порядке полинома равном единице. После оптимизации параметр сглаживания принял следующие значения: для модели средней выработки =0.25; для коэффициента текучести =0.3. Представим результаты вычислений в виде графиков, характеризующих динамику изменений средней выработки и коэффициента текучести персонала за 2002-2008гг., а также сглаженные ряды и прогнозы соответствующих показателей (Рис. 2.5).

Рис. 2.5. Прогнозирование динамики развития средней выработки и коэффициента текучести персонала методом экспоненциального сглаживания

Также, для остатков была построена авторегрессионая модель, и построенный ранее прогноз был пересчитан с учетом оцененной модели.

Анализ результатов показал, что модели адекватны:

  • остатки являются белым шумом;

  • нет эффектов перепараметризации.

Аргументы:

  • допустимое значение теста Портманто;

  • допустимые значения первых коэффициентов автокорреляции;

  • допустимые величины хвостов Т-значений для параметров модели.

Таким образом, можно заметить, что если не произойдут существенные изменения в политической и экономической обстановке или не будут приняты управленческие решения, влияющие на эффективность управления персоналом, средняя выработка в АОЗТ «Фотолэнд» будет продолжать уменьшаться, а коэффициент текучести примерно оставаться на одном, достаточно высоком уровне. Т.е. будет происходить дальнейшее снижение экономической эффективности управления персоналом, что негативно сказывается на работе всего предприятия.

Также важно иметь в виду, что экстраполяция в рядах динамики не является самоцелью, и носит не только приближенный, но и условный характер. Это обусловлено распространением на ряды динамики положений корреляционно-регрессионного анализа выборочных совокупностей.

Задача построения модели регрессии заключается не только в том, чтобы правильно определить совокупность факторов, влияющих на моделируемый показатель, но и чтобы включить в модель, насколько это возможно, не связанные между собой факторные признаки.

После того, как выбран дифференциальный показатель эффективности управления персоналом, выделены наиболее существенные факторы, влияющие на ее уровень, исходные данные очищены от аномальных наблюдений, следует проверить предпосылки возникновения явления мультиколлинеарности. Это явление часто представляет собой ощутимую угрозу для правильного определения и эффективной оценки взаимосвязей.

Для выявления данного эффекта, по мнению автора, целесообразно использовать метод, основанный на анализе парных коэффициентов корреляции.

Для этого была построена, с использованием пакета MESOSAUR, корреляционная матрица.

Анализ матрицы коэффициентов парной корреляции, рассчитанных для факторных показателей за 2007г., указал на наличие коллинеарных факторных показателей, а именно показатель Х1 (средний тарифный разряд) имеет сильную функциональную связь с факторным показателем Х18 (среднемесячная заработная плата), показатель Х4 (доля не состоявших в браке работников) имеет сильную функциональную связь с факторным показателем Х5 (доля не состоявших в браке работников, имеющих детей), показатель Х15 (доля работников, прошедших профессиональное обучение в течение периода) имеет сильную функциональную связь с факторным показателем Х16 (доля работников, повысивших разряд в течение периода, в общей численности персонала). Сильная связь, между этими показателями логически легко объясняется.

Считается, что два показателя коллинеарные, если парный коэффициент корреляции не менее /0,8/.

Таким образом, в целях устранения мультиколлинеарности в регрессионную модель включим по одному из представителей указанных групп. Для этого в регрессионной модели мы оставили Х18, так как, изменяя среднемесячную заработную плату, по мнению автора, можно влиять на результативные показатели эффективности управления персоналом, а также Х4 и Х16, так как эти показатели имеют более сильную связь с результативными показателями эффективности управления персоналом.

После того как на стадии априорного анализа произведен отбор факторов, влияющих на эффективность управления персоналом, и определена форма связи, затем собрана и проанализирована исходная статистическая информация, можно перейти непосредственно к построению модели эффективности управления персоналом.

Для построения моделей эффективности управления персоналом использовался многошаговый регрессионный анализ, основанный на отсеве несущественных факторов по t-критерию Стьюдента.

По этому критерию проверяется гипотеза, существенно ли отличен от нуля коэффициент регрессии j при некотором заданном уровне значимости ₤, который показывает вероятность отвергнуть правильную гипотезу. При этом чем меньше уровень значимости, тем меньше указанная вероятность. В исследовании принимаем ₤=0.05. Расчеты производились с использованием пакета MESOSAUR.

В качестве показателей эффективности управления персоналом была взята выработка на одного работника и коэффициент текучести персонала (Ктек).

Расчеты велись по данным за 2007г. для однородной совокупности, состоящей из 50 подразделений фирмы. Результаты многошагового регрессионного анализа при построении модели эффективности управления персоналом приведены в приложении Б.

После отсева статистически незначимых факторных показателей уравнения множественной регрессии моделей коэффициента текучести персонала и выработки на одного работника приобрели следующий вид:

YКт=11,327 – 1,5226 Х7 – 0,013326 Х11 + 0,06907 Х13 – 0,0011371 Х18;

YВыр = 13840 + 1878,7 Х7 + 40,945 Х11 + 67,583 Х13 + 3,1147 Х18.

Статистическая проверка показала адекватность моделей. Расчетная величина F-критерия Фишера для модели коэффициента текучести составила 21,536, а для выработки 39,383, при табличном значении для Ктек и выработки Fкр. (0,05; 5; 50) = 2,42.

Коэффициент множественной корреляции равен соответственно для Ктек и выработки 0,8425 и 0,9041, что указывает на то, что указанные факторные показатели сравнительно тесно связаны с результативным показателем.

Коэффициент множественной детерминации R2, равный соответственно, 0,7099 и 0,8174 свидетельствует о том, что вариация результативного показателя в исследуемой совокупности подразделений на 70,99 % и 81,74 % – результат колеблемости всех включенных в модель факторных показателей.

Перейдем к экономической интерпретации моделей, используя систему соответствующих коэффициентов.

Расчеты по рассматриваемой совокупности предприятий показали, что для выработки наиболее значимыми оказались факторные показатели:

Х7 - средний стаж работы в фирме, в годах;

Х11 - доля сотрудников работающих в режиме суммированного рабочего дня в общей численности персонала, в процентах;

Х13 - коэффициент использования персонала, в процентах;

Х18 - среднемесячная заработная плата, в руб.

В соответствии с полученным уравнением регрессии можно сделать следующие выводы: направление влияния включенных в модель факторов не противоречат экономическому смыслу. С увеличением среднего стажа работников на 1 год выработка увеличивается на 1878,7$, с увеличением заработной платы на 1 руб. она увеличивается на 3,11$, с увеличением коэффициента использования персонала на 1% - на 67,58$, с увлечением доли сотрудников работающих в режиме суммированного рабочего дня в общей численности персонала на 1% - на 40,95$.

Расчеты показали, что для коэффициента текучести наиболее значимые факторные показатели оказались те же, что и для выработки.

Направление влияния включенных в модель факторов не противоречат экономическому смыслу. С увеличением среднего стажа работников на 1 год коэффициент текучести уменьшается на 1,5226%, с увеличением заработной платы на 1 руб. он уменьшается на 0,0011%, с увеличением коэффициента использования персонала на 1% - увеличивается на 0,06907%, с увлечением доли сотрудников работающих в режиме суммированного рабочего дня в общей численности персонала на 1% - уменьшается на 0,0133%.

Прямое сравнение коэффициентов регрессии в уравнении множественной регрессии дает представление о степени влияния факторных признаков на результативный показатель только тогда, когда они выражаются в одинаковых единицах и имеют примерно одинаковую колеблемость.

Для данного исследования, мы предлагаем использовать средний частный коэффициент эластичности.

Для устранения различий в измерении и степени колеблемости, можно использовать другой показатель – бета-коэффициент. Однако для данного исследования, по мнению автора, достаточно оценить модель с помощью средних частотных коэффициентов эластичности (Эi).

Коэффициенты эластичности выражаются следующими величинами:

- для модели выработки:

Э7 = 0,136;

Э11 = 0,088;

Э13 = 0,0852;

Э18 = 0,171;

- для модели коэффициента текучести:

Э7 = -1,277;

Характеристики

Тип файла
Документ
Размер
4,1 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6361
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее