86276 (589956), страница 4

Файл №589956 86276 (Вивчення нильпотентної довжини кінцевих груп з відомими додаваннями до максимальних підгруп) 4 страница86276 (589956) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Нехай - централізатор групи . Якщо лема не вірна й , то ми можемо вибрати нормальну підгрупу групи , таку, що й мінімальну при цьому умові. Тому що група -розв'язна, факторгрупа виявляється або -групою, або -групою, а по визначенню групи вона не може бути -групою. Отже, факторгрупа є -група й порядки груп і взаємно прості. По теоремі Шура, група має доповнення в групі . Тому що , трансформування групи елементом з індуцірує її внутрішній автоморфізм, а тому що порядки й взаємно прості, цей автоморфізм може бути тільки тотожним. Тоді - прямий добуток і . Тому є характеристичною підгрупою в , а отже, нормальною підгрупою в , у протиріччі із припущенням, що . Це протиріччя доводить лему. Помітимо, що припущення насправді зайво, тому що в загальному випадку ми можемо застосувати лему до факторгрупи .

Наслідок 2.8. Нехай - деяка підгрупа , індекс якої не ділиться ні на яке просте число з , тоді центр групи втримується в центрі групи .

Дійсно, підгрупа повинна містити нормальну -підгрупу групи .

Наслідок 2.9. Нехай - деяка підгрупа групи , що містить , тоді не володіє неодиничної нормальної -підгрупою.

Дійсно, нормальна -підгрупа групи повинна втримуватися в центролизаторе групи .

Під -підгрупою кінцевої групи ми маємо на увазі таку підгрупу, порядок і індекс якої взаємно прості. Якщо група розв'язна і її порядок дорівнює , де , то група володіє -підгрупами порядку й будь-які дві з них сполучені, а тому ізоморфні.

Теорема 2.10. Якщо - розв'язна група порядку , де при , і якщо підгрупа групи порядку має клас нильпотентності те

Зокрема, для будь-якої кінцевої розв'язної групи . -підгрупа деякої факторгрупи , порядок якої ділить , має клас нильпотентності, не перевищуючий , так що ми можемо застосувати твердження леми 2.5 і одержати результат індукцією один по одному групи , допустивши що володіє тільки одною мінімальною нормальною підгрупою. Це буде -група для деякого простого числа , і ми можемо тому предполодить, що її порядок ділить . Тоді, якщо ми візьмемо в якості множина простих долителей числа , виявиться виконаної передумова леми 2.5. Якщо - найбільша нормальна -підгрупа групи й - її центр, то по наслідку леми 2.5 містить центр -підгрупи групи , що має порядок . Порядок -підгрупи групи ділить , тому клас нильпотентності її не більше . Для -підгрупи груп і порядку ізоморфні, так що в силу припущення індукції, застосованої до , одержимо

Тому що , той доказ по індукції проведено.

Перш ніж застосовувати лему 2.5 до доказу нерівності для , зручно уточнити її для випадку, при якому складається з одного простого числа . Нехай є -розв'язна група з верхнім -поруч (2.2) . Тоді лема 2.5, застосована до групи , показує, що якщо - елемент групи , що не входить в , те трансформування елементом індуцируе у нетотожний автоморфізм. Необхідне уточнення складається в заміні групи групою , де - підгрупа Фратіні групи . Тепер - -група, і в такий спосіб - елементарна абелева -група. Ясно тому, що автоморфізм групи , індукований групи , тотожний. Таким чином, множина елементів групи , що тотожно трансформує , є нормальною підгрупою групи , такий, що . По визначенню фактор група не може бути -групою, відмінної від 1, тому якщо , те група повинна містити елемент , що не входить в і порядку, взаємно простого . Тоді індуцірує автоморфізм групи порядку, взаємно простого с. Але автоморфізм -групи, по модулю підгрупі Фратіні, має порядок, рівний ступені числа . Таким чином, індуцірує у нетотожний автоморфізм, що суперечить визначенню групи . Виходить, , що й було потрібно. У такий спосіб:

Лема 2.11. Якщо є -розв'язна група з верхнім -поруч (2.2) і якщо - підгрупа Фратіні групи , те автоморфизми групи , які індуковані трансформуваннями елементами групи , представляють точно.

Наслідок 2.12. .

По лемі група не володіє неодиничної нормальної -підгрупою, і наступні члени її верхнього -ряду являють собою фактор групи по відповідних членів верхнього -ряду групи .

Теорема 2.13. Для кожної -розв'язної групи

(I)

(II)

Ми можемо використовувати індукцію один по одному групи й припустити, що володіє тільки одною мінімальною нормальною підгрупою . Очевидно, ми можемо також припустити, що , звідки наслідку з леми 2.11 , а, отже, , і - елементарна абелева -група. Тепер, думаючи , ми одержимо, що , так що по припущенню індукції містимо, що . Якщо - група порядку , то порядок її групи автоморфизмов дорівнює

так що . Відповідно до леми 2.11, група ізоморфна деякій підгрупі групи , так що , звідки . Таким чином,

що й було потрібно.

З іншої сторони відповідно до наслідку 1 леми 2.7, містить центр силовської -підгрупи групи , так що . Тому що , те індукція для (II) проводиться відразу.

Нерівності, отримані десь, аж ніяк не є найкращими. Для непарних їх значно можна підсилити. Однак при теорему 2.13 поліпшити не можна.

Останню теорему можна застосувати для короткого доказу тверджень і .

3. Група з нильпотентними додаваннями до підгруп

У справжньому главі описані нерозв'язні кінцеві групи з нильпотентними додаваннями до несверхразрешимих підгруп. До цього класу груп ставляться, зокрема, і кінцеві групи із примарними індексами несверхразрешимих груп. Доводиться

Теорема 3.1. Кінцева нерозв'язна група з нильпотентними додаваннями до несверхразрешимих підгруп ізоморфна або , де - нильпотентна група, а й - прості числа.

Наслідок 3.2. Кінцева нерозв'язна група, у якій всі підгрупи непримарного індексу сверхразрешими, ізоморфна або , де - -група, або , де - -група.

Відзначимо, що кінцеві групи з нильпотентними підгрупами непримарного індексу вивчені С. С. Левищенко [13]. Серед них немає нерозв'язних груп.

Розглядаються тільки кінцеві групи. Всі позначення, що зустрічаються, і визначення стандартні, їх можна знайти в [2,14].

Нам знадобиться наступна

Лема 3.3. Нехай у кінцевій групі кожна несверхразрешима група володіє нильпотентним додаванням. Тоді в будь-якій підгрупі й у будь-який фактор-групі групи кожна несверхразрешима підгрупа володіє нильпотентним додаванням.

Proof. Нехай - довільна підгрупа кінцевої групи , і нехай - несверхразрешимая підгрупа з . У групі існує нильпотентное додавання до підгрупи . Тому , а . Тепер - нильпотентна, і до можна взяти нильпотентне додавання в підгрупі .

Нехай - нормальна в підгрупа, і - несверхразрешимая в підгрупа. Тоді несверхразрешима, і існує нильпотентна підгрупа така, що . Тепер нильпотентна й , тобто до підгрупи можна знайти в нильпотентное додавання.

Доведемо теорему.

Приклад. Шлях - кінцева нерозв'язна група з нильпотентними додаваннями до підгруп. Тому що не -нильпотентна, те в існує -замкнута підгрупа Шмидта , де - нормальна в силовська 2-підгрупа, підгрупа - циклічна [14,c. 434]. Оскільки не є сверхразрешимої, те існує нильпотентна підгрупа така, що . З урахуванням парності порядку з теореми 2.8 [15] містимо, що фактор-група ізоморфна або , де - деяке просте число, а - найбільша розв'язна нормальна в підгрупа. Крім того,

а

Тут і - 'елементарна абелева й циклічна підгрупи порядку . З теореми 2.10 [15] одержуємо, що - простої число.

У випадку, коли й - прості числа в простій групі , кожна несверхразрешима підгрупа ізоморфна групі . Остання підгрупа має в циклічне доповнення . Тому група у випадку, коли й - прості числа, задовольняє умові теореми.

Перевіримо, що група не задовольняють умові теореми. Нехай

Відомо, що - нормальна в підгрупа, а - циклічна група порядку . Для силовської -підгрупи з маємо

Тепер

Оскільки й - прості числа, то в існує підгрупа порядку . Для підгрупа -замкнута, і зовнішній автоморфізм не централізує силовскую -підгрупу, тому несверхразрешима. Тому що в немає нильпотентною підгрупи порядку , то не задовольняє умові теореми при . Якщо , то в для підгрупи Шмидта, ізоморфній знакозмінній групі ступеня , повинна найтися нильпотентна підгрупа порядку, що ділиться на . Але такий нильпотентною підгрупи в немає.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее