86094 (589930)
Текст из файла
75
М ИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ
БЕЛАРУСЬ
Учреждение образования
«Гомельский государственный университет
имени Франциска Скорины»
Математический факультет
Кафедра дифференциальных уравнений
Допущена к защите
Зав. кафедрой
СТАРШИЙ И ВЕРХНИЙ ЦЕНТРАЛЬНЫЙ ПОКАЗАТЕЛИ ЛИНЕЙНОЙ СИСТЕМЫ
Дипломная работа
Исполнитель:
студентка группы М-51 Абраменко Т. Ф.
Научный руководитель:
доцент кафедры дифференциальных
уравнений, к. ф.-м. н. Зверева Т.Е.
Рецензент:
доцент кафедры ВМ и
программирования, к. ф.-м. н. Смородин В.С.
Гомель 2003
Содержание
ВВЕДЕНИЕ
1 НЕОБХОДИМЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
2 СООТНОШЕНИЕ
3 СТАРШИЙ И ВЕРХНИЙ ЦЕНТРАЛЬНЫЙ ПОКАЗАТЕЛИ ДЛЯ ДИАГОНАЛЬНОЙ СИСТЕМЫ
3.1 Старший и верхний центральный показатели для диагональной системы с произвольными коэффициентами
3.2 Старший и верхний центральный показатели для диагональной системы с постоянными коэффициентами
4 СТАРШИЙ И ВЕРХНИЙ ЦЕНТРАЛЬНЫЙ ПОКАЗАТЕЛИ НЕКОТОРОЙ ЛИНЕЙНОЙ ОДНОРОДНОЙ ДИАГОНАЛЬНОЙ СИСТЕМЫ. СЛУЧАЙ
4.1 Старший показатель некоторой линейной однородной диагональной системы
4.2 Верхний центральный показатель некоторой линейной однородной диагональной системы
5 ОСНОВНЫЕ СВОЙСТВА ВЕРХНЕГО ЦЕНТРАЛЬНОГО ПОКАЗАТЕЛЯ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
В данной дипломной работе проводится изучение таких понятий, как верхний центральный показатель системы, характеристические показатели Ляпунова; рассматриваются различные соотношения между старшим и верхним центральным показателями линейных систем, то есть рассматриваются случаи, когда старший показатель Ляпунова строго меньше, равен верхнему центральному показателю.
В дипломной работе проводится исследование конкретной линейной однородной диагональной системы: вычисляются характеристические показатели системы, находятся спектр системы, старший показатель системы, а также верхний центральный показатель этой же системы, устанавливается соотношение На конкретном примере выясняется, что роль оценки сверху показателей решений возмущенных систем
играет число , а не
.
1. НЕОБХОДИМЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Определение 1.1 [1,с.123]. Наибольший из частичных пределов a функции при
называется ее верхним пределом:
.
Определение 1.2 [1,с.125]. Число (или символ или
), определяемое формулой
.
будем называть характеристическим показателем Ляпунова (или характерисическим показателем).
Для показательной функции , очевидно, имеем
.
Лемма 1.1 [1,с.132]. Характеристический показатель конечномерной матрицы совпадает с характеристическим показателем ее нормы, то есть
.
Для вектор-столбца
будем использовать одну из норм [1,с.20]:
=
;
=
;
=
.
Свойства характеристического показателя функции [1,с.126,128]:
1)
=
,
;
2)
.
Замечание 1.1 [1,с.130]. Если линейная комбинация функций
,
,
где постоянны, содержит лишь одну функцию с наибольшим характеристическим показателем, то
=
.
Определение 1.3 [1,с.142]. Система ненулевых вектор-функций
обладает свойством несжимаемости, если характеристичесий показатель любой существенной их линейной комбинации
,
,
где постоянны, совпадает с наибольшим из характеристических показателей комбинируемых вектор-функций, то есть для всякой комбинации y имеем
=
.
Определение 1.4 [1,с.137]. Множество всех собственных характеристических показателей (то есть отличных от и
) решений дифференциальной системы будем называть ее спектром.
Теорема 1.1 [1,с.143]. Фундаментальная система линейной системы
,
где и
─ спектр системы
, является нормальной тогда и только тогда, когда она обладает свойством несжимаемости.
Замечание 1.2 [1,с.142]. Совокупность вектор-функций с различными характеристическими показателями, очевидно, обладает свойством несжимаемости.
Следствие 1.1 [1,с.145]. Всякая нормальная фундаментальная система реализует весь спектр линейной системы.
Определение1.5 [2,с.71]. Наибольший верхний показатель
системы
будем называть старшим показателем.
Определение 1.6 [2,с.7]. Пусть ─ функция. Тогда верхнее среднее значение функции
есть:
=
.
Рассмотрим какое-либо семейство кусочно непрерывных и равномерно ограниченных функций:
= ,
,
зависящие от параметра непрерывна в том смысле, что из
следует
равномерно, по крайней мере, на каждом конечном отрезке
.
Определение 1.7 [ 2,с.103]. Ограниченная измеримая функция называется верхней или C-функцией для семейства , если все функции этого семейства равномерно не превосходят в интегральном смысле функции
:
,
то есть, если
,
где ─ константа, общая для всех
и
, но, вообще говоря, зависящая от выбора
и
.
Определение 1.8 [2, с.103]. Совокупность всех верхних функций назовем верхним классом или C-классом семейства , и обозначим через
().
Определение 1.9 [2,с.103]. Число
назовем верхним центральным или C-числом семейства . Оно обозначается также через или
.
Утверждение 1.1 [2, с. 104]. Если существует такая C-функция , что
для всех , то эта функция одна образует верхний класс и C-число совпадает с
:
.
Замечание 1.3 [2,с.102]. Для упрощения записи введем обозначение
Определение 1.10 [2,с.115]. Центральное число семейства будем называть центральным показателем системы
.
Определение 1.11 [2,с.106]. Разобьем полуось точками 0,T,2T,… на промежутки
.
Пусть
.
Найдем
.
Замечание 1.4 [2,с.106]. Число
совпадает с и знак
можно заменить на
, то есть
.
Определение 1.12 [2,с.107]. Пусть ─ любая ограниченная кусочно непрерывная функция, для которой
.
Замечание 1.5 [2,с.107]. Такие функции существуют: достаточно положить на
равной одной из тех функций
, для которых достигается максимальное значение
.
Утверждение 1.2 [2,с.537]. Верхнее среднее значение любой ограниченной кусочно непрерывной функции, а в частности функции , где
произвольное, равно
.
Утверждение 1.3 [2,с.114]. Пусть
,
─ ее решение и
= ─
семейство кусочно непрерывных и равномерно ограниченных функций, где
.
Тогда старший показатель этой системы равен наибольшему из верхних средних значений функций семейства , то есть
.
2. СООТНОШЕНИЕ .
Рассмотрим какое-либо семейство кусочно непрерывных и равномерно ограниченных функций:
= ,
,
зависящее от параметра непрерывно в том смысле, что из
следует
равномерно, по крайней мере, на каждом конечном отрезке
.
Для доказательства соотношения нам потребуется доказать несколько утверждений и следствий.
Утверждение 1.
Если семейство сужается, то его верхний класс может только расшириться, а верхнее число уменьшиться, то есть из
’
следует
(’)
()
и
.
Доказательство.
Всякая верхняя функция для семейства является верхней и для ’, так как ’
. Значит,
()
(’).
По определению 1.9
.
Из того, что
()
(’)
следует
.
А значит,
.
Утверждение 1 доказано.
Утверждение 2.
Если семейство ’ состоит из одной функции
, то есть ’=
, то верхнее среднее значение функции
совпадает с верхним центральным числом семейства ’, то есть
Доказательство.
Для доказательства равенства
докажем два неравенства:
1) ;
2) .
-
Из определения 1.7 следует, что
является верхней функцией, то есть
,
= 0;
итак,
(’).
Следовательно, .
-
Пусть
─ любая верхняя функция семейства ’:
для любой (’).
Тогда по определению 1.6
.
Так как ─ любое, то
для любой функции ().
Следовательно,
.
Тем самым утверждение 2 доказано.
Следствие 1.(из утверждений 1 и 2)
Пусть = ─ семейство кусочно непрерывных функций и равномерно ограниченных функций. Тогда если семейство ’ состоит из одной функции
, то есть ’=
, и ’
, то верхнее среднее значение функции
не превосходит верхнего центрального числа семейства , то есть
.
Доказательство.
Так как ’ , то из утверждения 1 следует, что
(’)
()
и
.
Так как ’ состоит из одной функции, то есть ’= , то из утверждения 2 следует, что
.
Следовательно,
,
то есть
.
Следствие 1 доказано.
Следствие 2.(из следствия 1)
Пусть = ─ семейство кусочно непрерывных и равномерно ограниченных функций. Тогда
.
Доказательство.
Из следствия 1 вытекает, что для любого выполняется
.
Следовательно,
.
Следствие 2 доказано.
Воспользуемся доказательством следствия 2 для доказательства следующего утверждения.
Утверждение 3.
Пусть ─
некоторая линейная система дифференциальных уравнений и
= ─
семейство кусочно непрерывных и равномерно ограниченных функций, где
.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.