85854 (589884), страница 2
Текст из файла (страница 2)
Розглянемо тотожність
.
Піднесемо обидві частини рівності до квадрату
.
Підсумуємо праву та ліву частини рівності за та
:
Покажемо, що :
Отже, маємо
,
.
Дисперсія дорівнює
(обчислена за таблицею розподілу ). Тоді
.
Звідси
,
або, що теж саме,
.
Теорема доведена.
Наслідок. Середнє значення для систематичної вибірки більш точне, ніж середнє для простої випадкової вибірки, тобто
тоді і тільки тоді, коли
. (1.1.2)
Доведення.
Дисперсія середнього значення простої випадкової вибірки дорівнює
.
Тоді з (1.1.1) випливає, що тоді і тільки тоді, коли
.
Звідси маємо
.
Домножимо обидві частини нерівності на та праворуч винесемо
:
.
Враховуючи, що маємо
,
або,
.
Отже , .
Наслідок доведено.
Таким чином, систематичний відбір точніший, ніж простий випадковий відбір, якщо дисперсія одиниць систематичних вибірок більша дисперсії
всієї популяції. Систематичний відбір точний, коли одиниці всередині однієї й тієї ж вибірки неоднорідні, та неточний, коли вони однорідні. До цього можна прийти інтуїтивно. Якщо всередині систематичної вибірки варіація у порівнянні з варіацією популяції невелика, то послідовно вибрані одиниці вибірки несуть більш або менш однакову інформацію. Інший вираз для дисперсії наведемо у теоремі 1.1.3.
Теорема 1.1.3.
, (1.1.3)
де - коефіцієнт кореляції між парами одиниць, що належать до однієї й тієї самої систематичної вибірки. Цей коефіцієнт визначається за формулою
,
де чисельник є середнім по всім різним парам, а знаменник – середнє по всім
значенням
. Розпишемо чисельник і знаменник:
Підставивши отримані вирази у отримаємо:
.
Доведення.
Дисперсія середнього значення систематичної вибірки дорівнює
.
Звідси маємо
.
Отже,
.
Ділимо обидві частини на і отримуємо вираз для
.
Останній результат показує, що додатна кореляція між одиницями в одній і тій самій вибірці збільшує дисперсію вибіркового середнього. Навіть мала додатна кореляція може мати великий ефект за рахунок множника .
Теорема доведена.
Дві попередні теореми виражали через дисперсію популяції
, тобто співвідносили дисперсію
з дисперсією для простої випадкової вибірки
.
Існує аналог теореми 1.1.3, в якому виражена через дисперсію стратифікованої випадкової вибірки, де страти складалися з перших
одиниць, других
одиниць і т.п. При позначеннях індекс
при
відповідає номеру страти. Середнє для страти будемо записувати так
.
Теорема 1.1.4.
, (1.1.4)
– дисперсія одиниць, що належать до однієї й тієї самої страти. В знаменнику стоїть
, тому що кожна з
страт вносить
ступінь вільності. Величина
.
є коефіцієнтом кореляції між відхиленнями від середнього значення для страти по всім парам одиниць, що належать до однієї й тієї ж систематичної вибірки.
. (1.1.5)
Доведення.
Доведення цієї теореми аналогічно доведенню теореми 1.1.3.
Дисперсія середнього значення систематичної вибірки дорівнює
Розпишемо середнє значення популяції через середнє стратифікованої вибірки
:
{
- це
-та одиниця
-ї страти}
.
Отже маємо
.
Отже,
.
Теорема доведена.
Наслідок. Якщо , то систематична вибірка має ту саму точність, що й відповідна стратифікована випадкова вибірка з однією одиницею у кожній страті.
Це твердження випливає з того, що для такої стратифікованої випадкової вибірки дорівнює:
.
Теорема 1.1.5. Дисперсія величини , яка використовується для оцінювання сумарного значення популяції
, дорівнює
.
Приклад. У таблиці 1.1.2 наведені данні для невеликої штучної популяції, яка показує тенденцію до досить стійкого зростання значень ознаки у послідовності одиниць. Маємо ,
,
. Кожний стовпчик відповідає деякій систематичній вибірці, а рядки є стратами. Приклад ілюструє ситуацію, коли кореляція «всередині страт» додатна. Наприклад, у першій вибірці кожне з чотирьох чисел (0, 6, 18, 26) менше середнього значення у страті, до якого воно належить. Це справедливо, з невеликим винятком, для перших п’яти систематичних вибірок. В останніх п’яти вибірках відхилення від середніх значень для страт в основному додатне. Таким чином, члени суми у виразі для
переважно додатні. Відповідно до теореми 1.1.4 можна очікувати, що систематичний відбір буде менш точним, ніж стратифікований випадковий відбір з однією одиницею у кожній страті.
Таблиця 1.1.2 Данні по 10 систематичним вибіркам при обсязі вибірок та обсязі популяції
Страта | Номер систематичної вибірки ( |
| ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
I II III IV | 0 6 18 26 | 1 8 19 30 | 1 9 20 31 | 2 10 20 31 | 5 13 24 33 | 4 12 23 32 | 7 15 25 35 | 7 16 28 37 | 8 16 29 38 | 6 17 27 38 | 4,1 12,2 23,3 33,1 | |
| 12, 5 | 14, 75 | 15, 25 | 15, 75 | 18, 75 | 17, 75 | 20, 5 | 22 | 22, 75 | 22 | 72,7 | |
| 50 | 58 | 61 | 63 | 75 | 71 | 82 | 88 | 91 | 88 |
Середнє значення систематичної вибірки має розподіл
~
Дисперсія систематичної вибірки дорівнює
Знайдемо середнє та дисперсію для всієї популяції:
Тепер знайдемо дисперсію одиниць, що належать до однієї й тієї самої страти:
,
де - число страт,
- обсяг стратифікованої вибірки.
Тоді дисперсія оцінки середнього для простої випадкової вибірки має вид:
,
де - обсяг простої випадкової вибірки.
Дисперсія оцінки середнього для стратифікованої випадкової вибірки
,
де - число страт.
Стратифікований випадковий відбір та систематичний відбір виявились набагато ефективнішими, ніж простий випадковий відбір, причому, як і очікувалось, систематичний відбір менш точний, ніж стратифікований випадковий відбір.
1.2 Порівняння систематичного відбору зі стратифікованим випадковим відбором
Ефективність систематичного відбору в порівнянні зі стратифікованим або простим випадковим відбором суттєво залежить від особливостей популяції. Існують такі популяції, в яких систематичний відбір дає високу точність, але є й такі, для яких простий випадковий відбір є більш точним ніж систематичний. Для деяких популяцій та деяких значень дисперсія
середнього систематичної вибірки, веде себе досить погано − вона може навіть зростати при збільшені обсягу вибірки
. Тому важко вказати загальні умови, за яких рекомендовано застосовувати систематичний відбір. В будь-якому випадку для того, щоб його застосування було ефективним, необхідно знати будову популяції, з якої проводиться відбір.
При дослідженні цієї проблеми існує два напрямки. При одному з них порівнюються різні типи відбору зі штучних сукупностей, для яких є деякою простою функцією
. При іншому − проводиться аналогічне порівняння для реальних популяцій.
1.3 Популяції з «випадковим» порядком розміщення одиниць
Систематичний відбір, оскільки він зручний, застосовується іноді до популяцій, в яких одиниці дійсно розташовані навмання. Наприклад, так буває при відборі з картотеки, що складена в алфавітному порядку за прізвищами, якщо змінюється ознака, яка ніяк не пов’язана з прізвищем того, кого обстежують. В цьому випадку не буде ніякої тенденції чи стратифікування по в розташуванні карток, ні кореляції між сусідніми одиницями.
У такій ситуації ми могли б очікувати, що систематичний відбір буде, по суті, рівносильний простому випадковому відбору та буде мати ту саму дисперсію. Для конкретної скінченої популяції при заданих значеннях і
це не завжди вірно, тому що
, яка має
ступенів вільності, при малих
досить нестійка і може виявитись як більше так і менше, ніж
. Але існують дві теореми, які показують, що в середньому ці дисперсії рівні.