85696 (589858), страница 6

Файл №589858 85696 (Комплексные числа (избранные задачи)) 6 страница85696 (589858) страница 62016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

(Замечание.

Переход к приведенному кубическому уравнению можно осуществить с помощью схемы Горнера, разложив многочлен по степеням двучлена )

Для корней кубического уравнения

(2)

имеется так называемая формула Кардано, хотя правильнее было бы ее называть формулой дель Ферро – Тартальи - Кардано.

Впервые приведенное кубическое уравнение

решил профессор Болонского университета Сципион дель Ферро в конце XV века. Затем в 1535 году те же формулы были выведены Николо Тартальей. Наконец, в 1545 году решение уравнения (1) было изложено в книге Джероламо Кардано "Ars Magna" ("Великое искусство").

Формулы Кардано имеют вид:

,

где – значения радикала

Практически корни находятся проще.

Пусть – одно (любое) значение радикала u. Тогда два других значения можно найти следующим образом:

;

где e1 и e2 – значения корня кубического из 1 , т.е.

Если вычислить то получим:

; .

Действительно,

Аналогично доказывается равенство .

Подставляя полученные значения и в формулу

,

находим практические формулы:

;

;

.

В нашем случае:

Таким образом, положим . Тогда

следовательно,

, , .

Из последних равенств, учитывая, что получаем:

, , .

Ответ: ; ; .

Для приведенного кубического уравнения

(3)

дискриминант вычисляется по формуле:

.

При этом:

а) если , то уравнение (3) имеет один действительный и два комплексно сопряженных корня;

б) если , то уравнение (3) имеет три действительный корня, два из которых равны;

в) если , то уравнение (3) имеет три различных действительный корня.

Таким образом, в любом случае уравнение (3) с действительными коэффициентами имеет хотя бы один действительный корень.

Рассмотрим решение уравнения 4-й степени методом Феррари на конкретном примере.

Пример 2. Решите уравнение

Решение.

Оставим в левой части уравнения члены, содержащие и :

.

Дополним левую часть полученного уравнения до полного квадрата:

,

или

(1)

Введем в полный квадрат левой части равенства (1) параметр r:

Откуда с учетом равенства (1) получим:

(2)

Подберем значение параметра r таким образом, чтобы дискриминант правой части равенства (2) обратился в нуль (т.е. чтобы в правой части равенства (2) также получился полный квадрат).

Дискриминант D равен нулю тогда и только тогда, когда число r является корнем уравнения:

;

.

В частности, , если .

Подставив значение в равенство (2), получим:

,

или

.

Откуда,

,

,

или .

Следовательно,

; ;

;

Ответ: ; ; ;

Задача 69. Решите уравнение .

Решение

Данное уравнение – приведенное. Здесь , . Следовательно,

.

Для извлечения кубического корня из комплексного числа

представим его в тригонометрической форме:

,

поэтому , где

При получаем:

.

Значит,

,

поэтому .

Следовательно,

, , .

Ответ: 2; ; .

Задача 70. Решите уравнение .

Решение

Положив , получаем приведенное уравнение относительно неизвестной переменной y:

.

По формулам Кардано:

.

Легко видеть, что .

Следовательно, число является одним из значений кубического

корня из комплексного числа (тот же результат получается, если применить формулу извлечения корня n-й степени из комплексного числа).

Таким образом, , , тогда

, .

Итак, ,

,

.

Отсюда находим корни квадратного уравнения:

,

,

.

Ответ: ; ;

.

Задача 71. Не решая следующие уравнения, определите характер корней каждого их них:

а) ;

б) ;

в) .

Решение.

а) .

Дискриминант , т.е. , то уравнение имеет один действительный и два комплексно сопряженных корня.

б) .

Переходя к приведенному кубическому уравнению, получаем:

(б*). Откуда дискриминант , т.е. , то уравнение (б*), а, значит, и (б) имеет три различных действительный корня.

в) .

Переходя к приведенному кубическому уравнению, получаем: (в*). Отсюда , , то уравнение (в*), а, значит, и уравнение (в) имеет один действительный и два комплексно сопряженных корня.

Ответ: а) один действительный и два комплексно сопряженных корня; б) три различных действительный корня; в) один действительный и два комплексно сопряженных корня.

Задача 72. Решите уравнения: а) ;

б) .

Решение.

а) .Переходя к приведенному кубическому уравнению с помощью подстановки , получим уравнение:

, где , .

Зная, что:

;

;

.

По формулам Кардано:

Таким образом, получаем , значит , , , .

Следовательно, ; ; .

Откуда, , , .

б) .

Переходить к приведенному кубическому уравнению не нужно, так как исходное уравнение само является приведенным, причем , .

Таким образом, получаем: , .

Тогда , , , .

Следовательно, , .

Ответ: а) , , ;

б) , .

Задача 73. Решите уравнения: а) ;

б) .

Решение.

а) Преобразуем уравнение (а) по методу Феррари: ,

,

. (а*)

Введем в полный квадрат левой части равенства параметр r:

Откуда с учетом равенства (а*) находим:

,

(а**).

Теперь подберем такое значение параметра r, чтобы дискриминант

правой части равенства (а**) обратился в нуль.

Дискриминант D равен нулю тогда и только тогда, когда число r является корнем уравнения:

;

;

.

В частности, , если .

Подставив найденное значение в равенство (а*), получим:

, или .

Откуда, ,

,

или .

Следовательно, ; ; ; .

б) .

Преобразуем это уравнение по методу Феррари:

,

,

. (б*)

Введем в полный квадрат левой части равенства параметр r:

Откуда с учетом равенства (б*) находим:

(а**).

Подберем такое значение параметра r, чтобы дискриминант квадратного трехчлена в правой части равенства (а**) обратился в нуль.

Легко видеть, что дискриминант D равен нулю, если . следовательно, подставив значение в равенство (б**), получим:

;

.

Откуда, ,

или .

Следовательно,

; ; ; .

Ответ: а) ; .

б) ; 3; 1.

2.5. Комплексные числа и параметры

«Параметр (от греч. - отмеривающий) величина, значения которой служат для различения элементов некоторого множества между собой.

Например, уравнение , где а > 0, х R, y R, задает множество всех концентрических ок­ружностей, с центром (2; 1) радиуса а (рис. 33).

Рис. 33.

Если а = 1, то получим окружность 1), если а = 2, то - окружность 2) и т.д.

Интересно и следующее определение параметра «Неизвестные величины, значения которых задаем мы сами, называются параметрами».

Пусть, например, нужно решить уравнение

. Вряд ли легко мы справимся с этим уравнением, если будем решать относительно x, считая a параметром.

Лучше сначала считать х параметром и решать квадратное относительно а уравнение , а затем поменять x и a ролями.

Получим Остается решить два уравнения что труда уже не составит.

Прежде, чем перейти к решению задач, содержащих комплексные числа и параметр, сформулируем определения основных понятий, связанных с уравнениями (неравенствами) с параметром.

Определение 1. Пусть дано равенство с переменными x и a: . Если ставится задача для каждого действительного значения, а решить это уравнение относительно x, то уравнение называется уравнением с переменной x и параметром a.

Параметр обычно обозначается первыми буквами ла­тинского алфавита: а, b, с, d ...

Переменная, относительно которой решается уравнение последними буквами латинского алфавита: x, у, z, t, и, v.

Определение 2. Под областью определения уравнения с параметром а будем понимать все такие системы значений х и а, при которых имеет смысл.

Иногда область определения уравнения устанавливается довольно легко, а иногда в явном виде это сделать трудно. Тогда ограничиваемся только системой не­равенств, множество решений которой и является областью определения уравнения.

Определение З. Под решением уравнения c параметром a будем понимать систему значений x и a области определения уравнения, обращающую его в верное числовое равенство.

Определение 4. Решить уравнение с параметром a - это значит, для каждого действительного значения a найти все решения данного уравнения или уста­новить, что их нет.

Определение 5. Уравнения и равносильны при фиксированном значении а = а0, если уравнения без параметра и рав­носильны.

Определение 6. Уравнение является следствием уравнения при некотором значении a=а0, если множество решений уравнения содержится среди множества решений уравнения .

Задача 74. Определите семейство линий в комплексной плоскости, заданных уравнениями:

а) ; б) .

Характеристики

Тип файла
Документ
Размер
22,07 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее