85696 (589858), страница 2

Файл №589858 85696 (Комплексные числа (избранные задачи)) 2 страница85696 (589858) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Задача 2. Найдите x и y, для которых .

Решение

Получим и решим систему двух уравнений:

Ответ: .

Задача 3. Решите уравнение относительно действительных переменных x и y.

Решение

Левую часть уравнения можно рассматривать, как некоторое неизвестное комплексное число. Приведя его к виду , получаем уравнение равносильное данному: . Так как два комплексные числа равны тогда и только тогда, когда равны их действительные и мнимые части, приходим к системе:

Ответ: .

Задача 4. При каких действительных значениях x и y комплексные числа и будут противоположными?

Решение

Комплексные числа и будут противоположными, если выполняются условия:

Ответ: ; .

Задача 5. При каких действительных значениях x и y комплексные числа и будут равными?

Решение

Комплексные числа и будут равными, если выполняются условия:

Ответ: ; .

Задача 6. Решите уравнение относительно действительных переменных x и y.

Решение

Левую часть уравнения можно рассматривать, как некоторое неизвестное комплексное число. Приведя его к виду , получаем уравнение равносильное данному: . Так как два комплексные числа равны тогда и только тогда, когда равны их действительные и мнимые части, приходим к системе:

Ответ: .

Задача 7. Решите во множестве комплексных чисел уравнение .

Решение

Так как , тогда корни находятся по формуле

( ).

Отсюда, , .

Ответ: .

Задача 8. Решите уравнение .

Решение

Перепишем уравнение в виде .

Полагая , получим уравнение , которое имеет корень . Поэтому левую часть этого уравнения можно представить в виде произведения двучлена и квадратного трехчлена.

Для нахождения коэффициентов квадратного трехчлена применим схему Горнера:

1

1

2

– 4

1

1

2

4

0

Итак, получаем уравнение .

Квадратный трехчлен имеет корни и .

Следовательно, исходное уравнение имеет корни: , , .

Ответ: ; .

Задача 9. Решите уравнение .

Решение

Корни данного уравнения находятся по формулам

, ,

где и – числа, удовлетворяющие условию . Отсюда . Пусть , тогда , т. е. . Два комплексных числа равны, следовательно, равны их действительные и мнимые части:

Находим два решения этой системы: , . Таким образом,

решениями исходного уравнения являются числа , и

, т. е. , .

Ответ: ; .

Задача 10. Произведите действия с комплексными числами в алгебраической форме:

а) ; б) ; в) .

Решение

а)

б)

в)

Ответ: а) ; б) ; в) .

Задача 11. Произведите следующие действия над комплексными числами:

а) ; б) ; в) ; г) .

Решение

а) ;

б) ;

в) ;

г) .

Ответ: а) ; б) ; в) ; г) .

Задача 12. Запишите комплексное число в виде .

Решение

Имеем

Ответ: .

Задача 13. Найдите значение функции при .

Решение

Подставим значение x в функцию:

.

Вычислим второе слагаемое:

.

Вычислим первое слагаемое:

.

Таким образом, .

Ответ: .

Задача 14. Вычислите ; ; ; .

Решение

С помощью формулы:

Легко получаем:

;

;

;

.

Ответ: ; ; ; .

Задача 15. Выполните указанные действия: .

Решение

Вычислим значение дроби .

Следовательно,

Ответ: .

Задача 16. Решите уравнение .

Решение

По формуле , находим:

.

Заметим, что найденные в этой задаче корни являются сопряженными: и . Найдем сумму и произведение этих корней: , . Число 4 – это второй коэффициент уравнения , взятый с противоположным знаком, а число 13 – свободный член, то есть в этом случае справедлива теорема Виета. Она справедлива для любого квадратного уравнения: если и – корни уравнения , где , .

Ответ: .

Задача 17. Составьте приведенное квадратное уравнение с действительными коэффициентами, имеющий корень .

Решение

Второй корень уравнения является числом, сопряженным с данным корнем , то есть . По теореме Виета находим

; ,

где число 2 – это второй коэффициент уравнения, взятый с противоположным знаком, а число 5 – свободный член. Таким образом, получаем уравнение

.

Ответ: .

Задача 18. Даны числа ; . Найдите:

а) ; б) .

Решение

а) , тогда

б) , тогда

Ответ: а) ; б) .

Задача 19. Зная, что корнем уравнения является число , найдите все корни данного уравнения.

Решение

Поскольку все коэффициенты данного уравнения – действительные числа, то на основании теоремы о сопряженном корне, делаем вывод, что число также является корнем данного уравнения.

Пусть – неизвестный корень уравнения , тогда , где

, получаем .

Разделим обе части последнего равенства на , получим .

Следовательно, .

Ответ: ; .

Задача 20. Найдите все комплексные числа, каждое из которых сопряжено со своим квадратом.

Решение

Пусть – искомое комплексное число, где x и y – действительные числа. Тогда число , сопряженное числу , равно .

По условию задачи имеем: , т.е. .

Преобразовав это уравнение, получим: .

Два комплексных числа равны тогда и только тогда, когда равны соответственно их действительные и мнимые части. Следовательно, последнее уравнение равносильно следующей системе уравнений с действительными переменными x и y:

Возможны два случая:

1) . Тогда система равносильна системе: , которая

имеет следующие решения: ; .

2) . Тогда система равносильна системе , которая имеет два решения: и .

Итак, искомых чисел четыре: ; ; , из них два числа и – действительные, а два других и – комплексно сопряженные.

Ответ: ; ; .

Задача 21. Известно, что , . Найдите:

а) ; б) .

Решение

а) ,

б) .

Ответ: а) ; б) .

Задача 22. При каких действительных значениях x и y комплексные числа и будут сопряженными?

Решение

Комплексные числа и будут ком-

плексно сопряженными, если выполняются условия:

Ответ: ; .

Задача 23. Докажите тождество .

Решение

Пусть , , . Тогда , , , , , .

Отсюда легко следует доказываемое тождество.

Задача 24. Докажите, что если число является чисто мнимым, то .

Решение

По условию , где b – действительное число, тогда , , .

Тождество доказано.

Задача 25. Пусть . Докажите, что .

Решение

Поскольку , то

Тождество доказано.

Задача 26. Решите уравнение .

Решение

Пусть . Тогда данное уравнение запишется в виде , откуда . Комплексное число равно нулю, тогда и только тогда, когда его действительная и мнимая части равны нулю; поэтому для нахождения неизвестных x и y получим систему:

Из второго уравнения этой системы находим: x=0 и y=0. При x=0 первое уравнение системы запишется в виде или . Отсюда находим или . Таким образом, числа , , являются решениями данного уравнения.

При y=0 для нахождения x получаем уравнение . Отсюда следует, что x=0, и тем самым .

Ответ: ; ; .

Задача 27. Решить систему уравнений:

Решение

Полагая , имеем

следовательно, и .

После преобразований данная система принимает вид

Решение полученной системы является пары и . Таким образом, исходная система имеет два решения и .

Ответ: ; .

Задача 28. Докажите, что если , то .

Решение

Предположим, что существует такое комплексное число , , для которого выполнено неравенство . Тогда , или .

Поскольку

то и – действительные числа. Поэтому из последнего неравенства получим неравенство: .

Следовательно, .

Полученное противоречие доказывает утверждение.

Задача 29. Решите уравнение .

Решение

По формулам корней квадратного уравнения имеем: .

Извлекая корень квадратный из числа , получаем .

Следовательно, ;

.

Ответ: ; .

Задача 30. Извлеките квадратный корень из комплексного числа .

Решение

Пусть , где .

По формуле

Таким образом .

Ответ: .

Задача 31. Решите уравнение: .

Решение

Имеем , ,

.

Получаем

Извлечем квадратный корень из комплексного числа по формулам:

; ;

Так как , Тогда

Итак, , тогда

Где и

Можно сделать проверку по теореме Виета:

и .

Ответ: ; .

Задача 32.

Пусть , . При каких действительных значениях a и b выполняется условие ?

Решение

Находим

.

Используя условие равенства двух комплексных чисел, получаем систему

Ответ: .

2. 2. Геометрическая интерпретация комплексных чисел

Введем на плоскости прямоугольную систему координат xOy и поставим в соответствии каждому комплексному числу точку плоскости с координатами (a; b). Полученное соответствие между всеми комплексными числами и всеми точками плоскости взаимно однозначно: каждому комплексному числу соответствует одна точка плоскости с координатами (a; b), и обратно, каждой точке плоскости с координатами (a; b) соответствует единственное комплексное число (см. рис. 1).

Характеристики

Тип файла
Документ
Размер
22,07 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее