85686 (589856)
Текст из файла
Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет им. Ф. Скорины"
Математический факультет
Кафедра алгебры и геометрии
КЛАССЫ КОНЕЧНЫХ ГРУПП , ЗАМКНУТЫЕ ОТНОСИТЕЛЬНО ПРОИЗВЕДЕНИЯ ОБОБЩЕННО СУБНОРМАЛЬНЫХ
-ПОДГРУПП
Курсовая работа
Исполнитель:
Студентка группы М-43 МОКЕЕВА О. А.
Научный руководитель:
доктор ф-м наук, профессор Семенчук В.Н.
Гомель 2008
Содержание
Перечень условных обозначений
Введение
1 Некоторые базисные леммы
2 Критерий принадлежности факторизуемой группы
классическим классам конечных групп
3 Сверхрадикальные формации
Заключение
Список использованных источников
Перечень условных обозначений
Рассматриваются только конечные группы. Вся терминология заимствована из [44, 47].
--- множество всех натуральных чисел;
--- множество всех простых чисел;
--- некоторое множество простых чисел, т. е.
;
---
дополнение к во множестве всех простых чисел; в частности,
;
примарное число --- любое число вида .
Буквами обозначаются простые числа.
Пусть --- группа. Тогда:
--- порядок группы
;
---
множество всех простых делителей порядка группы ;
-группа --- группа
, для которой
;
-группа --- группа
, для которой
;
--- коммутант группы
, т. е. подгруппа, порожденная коммутаторами всех элементов группы
;
--- подгруппа Фиттинга группы
, т. е. произведение всех нормальных нильпотентных подгрупп группы
;
--- наибольшая нормальная
-нильпотентная подгруппа группы
;
--- подгруппа Фраттини группы
, т. е. пересечение всех максимальных подгрупп группы
;
--- наибольшая нормальная
-подгруппа группы
;
---
-холлова подгруппа группы
;
--- силовская
-подгруппа группы
;
--- дополнение к силовской
-подгруппе в группе
, т. е.
-холлова подгруппа группы
;
--- нильпотентная длина группы
;
---
-длина группы
;
--- минимальное число порождающих элементов группы
;
--- цоколь группы
, т. е. подгруппа, порожденная всеми минимальными нормальными подгруппами группы
;
--- циклическая группа порядка
.
Если и
--- подгруппы группы
, то :
---
является подгруппой группы
;
---
является собственной подгруппой группы
;
---
является нормальной подгруппой группы
;
--
- ядро подгруппы в группе
, т. е. пересечение всех подгрупп, сопряженных с
в
;
--- нормальное замыкание подгруппы
в группе
, т. е. подгруппа, порожденная всеми сопряженными с
подгруппами группы
;
--- индекс подгруппы
в группе
;
;
--- нормализатор подгруппы
в группе
;
--- централизатор подгруппы
в группе
;
--- взаимный коммутант подгрупп
и
;
--- подгруппа, порожденная подгруппами
и
.
Минимальная нормальная подгруппа группы --- неединичная нормальная подгруппа группы
, не содержащая собственных неединичных нормальных подгрупп группы
;
---
является максимальной подгруппой группы
.
Если и
--- подгруппы группы
, то:
--- прямое произведение подгрупп
и
;
--- полупрямое произведение нормальной подгруппы
и подгруппы
;
---
и
изоморфны;
--- регулярное сплетение подгрупп
и
.
Подгруппы и
группы
называются перестановочными, если
.
Группу называют:
-замкнутой, если силовская
-подгруппа группы
нормальна в
;
-нильпотентной, если
-холлова подгруппа группы
нормальна в
;
-разрешимой, если существует нормальный ряд, факторы которого либо
-группы, либо
-группы;
-сверхразрешимой, если каждый ее главный фактор является либо
-группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
разрешимой, если существует номер такой, что
;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Монолитическая группа --- неединичная группа, имеющая единственную минимальную нормальную подгруппу.
-замкнутая группа --- группа, обладающая нормальной холловской
-подгруппой.
-специальная группа --- группа, обладающая нильпотентной нормальной холловской
-подгруппой.
-разложимая группа --- группа, являющаяся одновременно
-специальной и
-замкнутой.
Группа Шмидта --- это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе группы
называется такая подгруппа
из
, что
.
Цепь --- это совокупность вложенных друг в друга подгрупп.
Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу.
Ряд подгрупп называется:
субнормальным, если для любого
;
нормальным, если для любого
;
главным, если является минимальной нормальной подгруппой в
для всех
.
Класс групп --- совокупность групп, содержащая с каждой своей группой и все ей изоморфные группы.
-группа --- группа, принадлежащая классу групп
.
Формация --- класс групп, замкнутый относительно факторгрупп и подпрямых произведений.
Если --- класс групп, то:
--- множество всех простых делителей порядков всех групп из
;
--- множество всех тех простых чисел
, для которых
;
--- формация, порожденная классом
;
--- насыщенная формация, порожденная классом
;
--- класс всех групп
, представимых в виде
где ,
;
;
--- класс всех минимальных не
-групп, т. е. групп не принадлежащих
, но все собственные подгруппы которых принадлежат
;
--- класс всех
-групп из
;
--- класс всех конечных групп;
--- класс всех разрешимых конечных групп;
--- класс всех
-групп;
--- класс всех разрешимых
-групп;
--- класс всех разрешимых
-групп;
--- класс всех нильпотентных групп;
--- класс всех разрешимых групп с нильпотентной длиной
.
Если и
--- классы групп, то:
.
Если --- класс групп и
--- группа, то:
--- пересечение всех нормальных подгрупп
из
таких, что
;
--- произведение всех нормальных
-подгрупп группы
.
Если и
--- формации, то:
--- произведение формаций;
--- пересечение всех
-абнормальных максимальных подгрупп группы
.
Если --- насыщенная формация, то:
--- существенная характеристика формации
.
-абнормальной называется максимальная подгруппа
группы
, если
, где
--- некоторая непустая формация.
-гиперцентральной подгруппой в
называется разрешимая нормальная подгруппа
группы
, если
обладает субнормальным рядом
таким, что
(1) каждый фактор является главным фактором группы
;
(2) если порядок фактора есть степень простого числа
, то
.
---
-гиперцентр группы
, т. е. произведение всех
-гиперцентральных подгрупп группы
.
Введение
Вопросы, посвященные факторизации групп, в теории конечных групп занимают важное место. Под факторизацией конечной группы понимается представление ее в виде произведения некоторых еe подгрупп, взятых в определенном порядке, или попарно перестановочных. Исследуются как способы факторизации заданной группы, так и свойства групп, допускающих ту или иную заданную факторизацию.
Начало исследований по факторизации конечных групп восходит к классическим работам Ф. Холла [62, 63], посвященных изучению строения разрешимых групп. Как известно, Ф. Холлом было доказано [63], что конечная разрешимая группа допускает факторизацию при помощи некоторых своих перестановочных силовских подгрупп различных порядков (составляющих так называемую силовскую базу разрешимой группы).
Следующий важный шаг в данном направлении был сделан С.А.Чунихиным, которым был исследован ряд важных арифметических свойств конечных групп [43]. Вопросами факторизации конечных групп занималось много математиков, и развитию данного направления посвящено много научных работ известных математиков.
Кегель и Виландт [68, 75] установили, что конечная группа, факторизуемая двумя нильпотентными подгруппами разрешима. Теорема Кегеля --- Виландта послужила источником многочисленных обобщений и стимулировала дальнейшее развитие ряда вопросов, связанных с факторизациями конечных групп.
Cреди дальнейших исследований, посвященных факторизации групп, выделяются работы Л.С. Казарина [6, 7, 67], Л.А. Шеметкова [45, 46], В.С. Монахова [13, 14], А.Н. Скибы [12, 61], В.Н. Тютянова [38] и др.
Важную роль для дальнейшего строения факторизуемых групп оказала идея Гашюца о том [59], что внутреннее строение конечной группы удобно исследовать по отношению к некоторому фиксированному классу групп, названному Гашюцем насыщенной формацией.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.