85676 (589854), страница 3

Файл №589854 85676 (Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка) 3 страница85676 (589854) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

(2.13)

Имеем:

, .

Корни -действительные и различные по знаку, следовательно точка N1 (0,-1) - седло.

Исследуем точку N2 (0,1).

Согласно (2.13) составим характеристическое уравнение:

, .

Корни -действительные и одного знака, значит точка N2 (0,1) - устойчивый узел.

Исследуем концы оси y с помощью преобразования [7] . Это преобразование переводит систему (2.8) в систему:

(2.14)

где .

Для исследования состояний равновесия на концах оси y, нам необходимо исследовать только точку N3 (0,0). Составим характеристическое уравнение в точке N3 (0,0):

Корни - действительные и одного знака, значит точка N3 (0,0) - неустойчивый узел.

Теперь дадим распределение состояний равновесия системы (2.1) в виде таблицы 2.

Таблица 2.

d

N1

N2

N3

(-∞; 0)

седло

неуст. узел

уст. узел

седло

седло

уст. узел

неуст. узел

(0; +∞)

седло

уст. узел

неуст. узел

седло

седло

уст. узел

неуст. узел

Положение кривых (2.9), (2.10) и расположение относительно их состояний равновесия при d0 и d0 дается соответственно рис.2 (а, б).

Поведение траекторий системы в целом при d0 и d0 дается рис.5 (а, б) приложения Б: Поведение траекторий системы (2.8).

Вопрос о существовании предельных циклов не возникает, так как Воробьев А.П. [5] доказал, для квадратичной системы предельный цикл не может окружать узел.

а (d0) б (d0)

Рис. 2


2.3 Исследование системы (1.1) с коэффициентами, заданными формулами (1.52) - (1.53)

Будем проводить наше исследование в предположении, что

, .

Пусть мы имеем систему (1.1), коэффициенты которой определяются формулами (1.52) - (1.53). Тогда система (1.1) будет иметь вид:

(2.15)

Интегральные кривые в этом случае имеют вид:

(2.16)

(2.17)

То есть частные интегралы (1.3) и (1.13) преобразовываются в прямые таким образом, что интегральная кривая (2.16) совпадает с одной из прямых интегральной кривой (2.17).

Найдем состояния равновесия системы (2.15). Приравняв правые части системы нулю, и исключив переменную y, получим следующее уравнение для определения абсцисс состояний равновесия:

(2.18)

Из (2.18) получаем, что

, , .

Ординаты точек покоя имеют вид:

, , .

Итак, имеем точки

, , .

Исследуем поведения траекторий в окрестностях состояний равновесия .

Исследуем состояние равновесия в точке .

Составим характеристическое уравнение.

Отсюда

(2.19)

Следовательно, характеристическое уравнение примет вид

Имеем

,

Или

.

Характеристическими числами для точки для системы (2.15) будут

.

Корни - комплексные и зависят от параметра d. Значит, если d0, то точка - устойчивый фокус, если d0, то точка - неустойчивый фокус.

Исследуем точку

.

Согласно (2.19) составим характеристическое уравнение в точке

.

Имеем

.

Характеристическими числами для точки системы (2.15) будут

,

Корни - действительные и различных знаков не зависимо от параметра d. Следовательно, точка - седло.

3. Исследуем точку .

По (2.19) составим характеристическое уравнение в точке .

Получим

.

Решая уравнение, получим

,

то есть

,

Корни - действительные и одного знака, зависящие от параметра d. Если do, то точка - неустойчивый узел, если d0, то точка - устойчивый узел.

Исследуем бесконечно - удаленную часть плоскости вне концов оси oy преобразованием [7] Это преобразование систему (2.15) переводит в систему:

(2.20)

где .

Изучим бесконечно - удаленные точки на оси u, то есть при z=0. Получаем

Следовательно

Итак, имеем две точки N1 (0,2) и N2 (0,-2).

Исследуем характер этих точек обычным способом. Составим характеристическое уравнение в точке N1 (0,2).

(2.21)

.

Следовательно

,

Воспользуемся параллельным переносом

и подставим z, u в систему (2.20). Получим новую систему:

(2.22)

Составим характеристическое уравнение в точке N2 (0,-2)

Характеристическими числами для точки N2 (0,-2), будут

, -

сложное состояние равновесия.

Для определения характера состояния равновесия воспользуемся теоремой [2, с. 196-198].

Теорема 2.1. Пусть точка (0,0) - изолированное состояние равновесия системы:

(2.23)

где , есть полиномы от x,y начиная со второй степени, - решение уравнения , а разложение функции имеет вид:

Тогда

1) при m - нечетном и m0 точка (0,0) - есть топологический узел;

при m - нечетном и m0 точка (0,0) - есть топологическое седло;

при m - четном точка (0,0) есть седло - узел, то есть такое состояние равновесия, каноническая окрестность которого состоит из параболистического и двух гиперболических секторов. При этом

если m0, то внутри гиперболических секторов заключен отрезок положительной полуоси OX, примыкающий к точке (0,0);

если m0, то отрезок отрицательной полуоси OX.

Чтобы воспользоваться теоремой, необходимо систему (2.22) привести к виду:

Это можно сделать, воспользовавшись одним из следующих преобразований [2, с. 199-201]:

если ,

если , ,

если , ,

где a, b, c, d - коэффициенты системы (2.23).

Тогда для системы (2.22) возьмем следующее преобразование:

Получим

Тогда

(2.24)

Найдем решение уравнения:

в виде ряда по степеням Z1:

Следовательно

Тогда

Подставляя U1 в систему (2.24) получим:

Отсюда

, 0.

Следовательно, по теореме 2.1 получаем, что точка N2 (0,-2) - седло - узел.

Исследуем концы оси y с помощью преобразования [7] . Это преобразование переводит систему (2.15) в систему:

(2.25)

где .

Для исследования состояний равновесий на концах оси y, нам необходимо исследовать только точку N3 (0,0). Составим характеристическое уравнение в точке N3 (0,0)

Соответственно характеристическими числами будут

Корни - действительные и одного знака. Следовательно, точка N3 (0,0) - устойчивый узел.

Теперь дадим распределение состояний равновесия системы (2.1) в виде таблицы 3.

Таблица 3.

d

N1

N2

N3

(-∞; 0)

уст. фокус

седло

неуст. узел

седло

седло-узел

уст. узел

(0; +∞)

неуст. фокус

седло

уст. узел

седло

седло-узел

уст. узел

Положение кривых (2.16), (2.17) и расположение относительно их состояний равновесия при d0 и d0 дается соответственно рис.3 (а, б).

Поведение траекторий системы в целом при d0 и d0 дается Рис.6 (а, б) приложения В: Поведение траекторий системы (2.15).

Вопрос существования предельных циклов остается открытым.

а (d0)

б (d0)

Рис. 3


Заключение

В данной дипломной работе построена квадратичная двумерная стационарная система при условии, что частным интегралом является кривая четвертого порядка, которая распадается на две кривые второго порядка, одна из которых парабола, вторая окружность или гипербола. При этом коэффициенты кривых выражаются через произвольный параметр системы.

Проведено качественное исследование системы. Найдены необходимые и достаточные условия существования у системы двух частных интегралов. В зависимости от коэффициентов были рассмотрены 3 случая. Найдены состояния равновесия трех полученных систем, которые принадлежат интегральным кривым. Исследована бесконечно-удаленная часть плоскости систем, в двух из которых доказано отсутствие предельных циклов. Выяснено поведение сепаратрис седел и построена качественная картина поведения траекторий систем в круге Пуанкаре.


Список использованных источников

  1. Баутин Н.Н. О числе предельных циклов, появляющихся при изменении коэффициентов из состояния равновесия типа фокуса или центра // Матем. сб. - 1952. - Т.30,№1. - 458 с.

  2. Баутин Н.Н., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости. - М.: Наука, 1976. - 274 с.

  3. Бендиксон И. О кривых, определяемых дифференциальными уравнениями. - УМН, 1941. - Вып.9. - 643 с.

  4. Биркгоф Дж.Д. Динамические системы. М. - Л.: Гостехиздат, 1941. - 340 с.

  5. Воробьев А.П. К вопросу о циклах вокруг особой точки типа “узел" // ДАН БССР. - 1960. - Т.4,№9. - 720 с.

  6. Еругин Н.П. Построение всего множества систем дифференциальных уравнений, имеющих заданную интегральную кривую. - ПММ. - 1952. - Т.16, Вып.6. - с.659-670.

  7. Пуанкаре А. О кривых, определяемых дифференциальными уравнениями. - М. - Л.: ГИТТЛ, 1947. - 839 с.

  8. Серебрякова Н.Н. Качественное исследование одной системы дифференциальных уравнений теории колебаний. - ПММ. - 1963 Т.27, Вып.1. - 230 с.

  9. Филипцов В.Ф. К вопросу алгебраических интегралов одной системы дифференциальных уравнений // Дифференц. уравнения. - 1973. - Т.9,№3. - 256 с.

  10. Черкас Л.А. Об алгебраических решениях уравнения , где P и Q - многочлены второй степени // ДАН БССР. - 1963. - Т.7,№11. - 950 с.

  11. Яблонский А.И. Алгебраические интегралы одной системы дифференциальных уравнений // Дифференц. уравнения. - 1970. - Т.6,№10. - с.1752-1760.


Приложение А

Поведение траекторий системы (2.1)

а) (d<0)

б) (d>0)

Рис. 4


Приложение Б

Поведение траекторий системы (2.8)

а) (d<0)

б) (d>0)

Рис. 5


Приложение В

Поведение траекторий системы (2.15)

а) (d<0)

б) (d>0)

Рис. 6

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее