85676 (589854)

Файл №589854 85676 (Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка)85676 (589854)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

"Гомельский государственный университет

имени Франциска Скорины"

Математический факультет

Кафедра дифференциальных уравнений

Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка

Дипломная работа

Исполнитель:

студентка группы М-51 БРАВАЯ Е.Н.

Научный руководитель:

доцент, к. ф-м. н. ФИЛИПЦОВ В.Ф.

Рецензент:

профессор, д. ф-м. н. СТАРОВОЙТОВ Э.И.

Гомель 2003


Реферат

Дипломная работа 38 страниц, 11 источников.

Ключевые слова и словосочетания: квадратичная двумерная стационарная система, частный интеграл, парабола, гипербола, окружность, точка, характеристическое уравнение, характеристическое число, узел, седло, фокус.

Данная работа содержит результаты исследований автора, относящиеся к качественному исследованию в целом двумерной квадратичной стационарной системы.

Основным инструментом исследований является понятие частного интеграла.

Работа состоит из двух глав.

В первой главе проводится построение квадратичных двумерных стационарных систем с заданными интегралами, при этом коэффициенты интегралов выражаются через коэффициенты системы, а коэффициенты системы связаны между собой тремя соотношениями.

Во второй главе проводится качественное исследование в целом выделенных в первой главе классов систем при фиксированных значениях некоторых параметров.

Содержание

Реферат

Введение

1. Построение квадратичных двумерных стационарных систем

1.1 Построение квадратичной двумерной стационарной системы с частным интегралом в виде параболы

1.2 Построение квадратичной двумерной стационарной системы с частным интегралом в виде окружности либо гиперболы

1.3 Необходимые и достаточные условия существования у системы (1.1) двух частных интегралов (1.3), (1.13)

2. Качественное исследование построенных классов систем

2.1 Исследование системы (1.1) с коэффициентами, заданными формулами (1.28) - (1.31)

2.2 Исследование системы (1.1) с коэффициентами, заданными формулами (1.41) - (1.42)

2.3 Исследование системы (1.1) с коэффициентами, заданными формулами (1.52) - (1.53)

Заключение

Список использованных источников

Приложение А

Приложение Б

Приложение В


Введение

Известно, что в элементарных функциях и даже в квадратурах интегрируются очень немногие классы дифференциальных уравнений. В связи с этим появилась необходимость в создании такой теории, с помощью которой можно было бы изучать свойства решений дифференциальных уравнений по виду самих уравнений. Такой теорией, наряду с аналитической, и является качественная теория дифференциальных уравнений.

Впервые задача качественного исследования для простейшего случая системы двух дифференциальных уравнений с полной отчетливостью была поставлена А. Пуанкаре [7] в конце прошлого столетия. Позднее исследования А. Пуанкаре были дополнены И. Бендиксоном [3, с. 191-211] и уточнены Дж.Д. Биркгофом [4, с.175-179].

(0.1)

Одной из задач качественной теории дифференциальных уравнений является изучение поведения траекторий динамической системы (0.1) на фазовой плоскости в целом в случае, когда P (x,y) и Q (x,y) - аналитические функции. Интерес к изучению этой системы или соответствующего ей уравнения объясняется их непосредственным практическим применением в различных областях физики и техники.

(0.2)

Имеется много работ, в которых динамические системы изучались в предположении, что их частными интегралами являются алгебраические кривые. Толчком к большинству из них послужила работа Н.П. Еругина [6, с.659 - 670], в которой он дал способ построения систем дифференциальных уравнений, имеющих в качестве своего частного интеграла кривую заданного вида.

Знание одного частного алгебраического интеграла системы (0.1) во многих случаях помогает построить полную качественную картину поведения интегральных кривых в целом. Отметим ряд работ этого характера для систем (0.1), в которых P (x,y) и Q (x,y) - полиномы второй степени.

Н.Н. Баутиным [1, с.181 - 196] и Н.Н. Серебряковой [8, с.160 - 166] полностью исследован характер поведения траекторий системы (0.1), имеющей два алгебраических интеграла в виде прямых. В [10, с.732 - 735] Л.А. Черкасом такое исследование проведено для уравнения (0.2) при наличии частного интеграла в виде кривой третьего порядка. Яблонский А.И. [11, с.1752 - 1760] и Филипцов В.Ф. [9, с.469-476] изучали квадратичные системы с предположением, что частным интегралом являлись алгебраические кривые четвертого порядка.

В данной работе рассматривается система

(0.3)

и проводится качественное исследование в целом системы (0.3) при условии, что частным интегралом является кривая четвертого порядка, которая распадается на две кривые второго порядка, одна из которых парабола, вторая окружность или гипербола.

Работа состоит из двух глав.

В первой главе проводится построение квадратичных двумерных стационарных систем с заданными интегралами, при этом коэффициенты интегралов выражаются через коэффициенты системы, а коэффициенты системы связаны между собой тремя соотношениями.

Во второй главе проводится качественное исследование в целом выделенных в первой главе классов систем при фиксированных значениях некоторых параметров.


1. Построение квадратичных двумерных стационарных систем

1.1 Построение квадратичной двумерной стационарной системы с частным интегралом в виде параболы

Рассмотрим систему дифференциальных уравнений

(1.1)

Пусть система (1.1) имеет частный интеграл вида:

, (1.2)

где Fk (x,y) - однородные полиномы от x и y степени k.

В качестве частного интеграла (1.2) возьмем параболу вида:

F (x,y) y+1 x2 +2 x+3 = 0 (1.3)

Будем предполагать, что 3 0, то есть парабола не проходит через начало координат.

Согласно [10, с.1752-1760] для интеграла (1.3) системы (1.1) имеет место соотношение:

, (1.4)

где L (x,y) = px+my+n, p, m, n - постоянные.

Тогда следуя формуле (1.4) получим равенство:

(21x+2) (ax+by+a1x2+2b1xy+c1y2) + (cx+dy+a2x2+2b2xy+c2y2) = = (y+1x2+2x+3) (px+my+n).

Приравнивая коэффициенты при одинаковых степенях xm yn слева и справа, получим равенства:

(2a1-p) 1= 0 (1.51)

(4b1-m) 1= 0 (1.52)

21c1= 0 (1.53)

(2a-n) 1+ (a1-p) 2+a2= 0 (1.61)

21b+ (2b1-m) 2+2b2+p= 0 (1.62)

2c1+c2-m= 0 (1.63)

(a-n) 2-p3n+c= 0 (1.71)

2b-3m+d-n= 0 (1.72)

3n= 0 (1.73)

Пусть 1 0, тогда из равенств (1.51), (1.52), (1.53), (1.63) и (1.73) получаем, что

P=2a1, m=4b1, c1=0, c2=4b1, n=0 (1.8)

Из соотношений (1.61), (1.62) и (1.71) найдем выражения коэффициентов кривой (1.3) через коэффициенты системы (1.1) в следующем виде:

1 , (1.9)

2 , (1.10)

3 . (1.11)

Равенство (1.72) с учетом полученных выражений (1.9) - (1.11), даст условие, связывающее коэффициенты a, b, c, d, a1, a2, b1, b2:

(1.12)

Итак, установлена следующая теорема:

Теорема 1.1 Система (1.1) имеет частный интеграл (1.3), коэффициенты которого выражаются формулами (1.9) - (1.11), при условии, что коэффициенты системы связаны соотношением (1.12) и c1= 0, c2= 4b1, a10, 2b1a-a1b0.

1.2 Построение квадратичной двумерной стационарной системы с частным интегралом в виде окружности либо гиперболы

Пусть теперь система (1.1) наряду с интегралом (1.3) имеет интеграл в виде:

y2+x2+x+y+=0 (1.13)

Будем рассматривать теперь систему:

(1.14)

Согласно формуле (1.4), где L

(x,y) = m1x+n1y+p1,

m1, n1, p1 - постоянные для системы (1.1), имеем:

(2a1-m1) 2= 0 (1.151)

(4b1-n1) +2a1= 0 (1.152)

m1= 4b2 (1.153)

n1=8b1 (1.154)

(2a-p1) + (a1-m1) +a2=0 (1.161)

2b+ (2b1-n1) + (2b2-m1) +2c= 0 (1.162)

(4b1-n1) +2d-p1= 0 (1.163)

(a-p1) +c+m1= 0 (1.171)

b+ (d-p1) -n1= 0 (1.172)

p1= 0 (1.173)

Предположим, что кривая не проходит через начало координат, то есть 0.

Пусть 0, тогда из равенств (1.151), (1.153), (1.154) и (1.173) получаем, что

m1=4b2, n1=8b1, a1=2b2, p1=0 (1.18)

А из соотношений (1.161), (1.163) и (1.171) найдем выражения коэффициентов кривой (1.13) через коэффициенты системы (1.1) в следующем виде:

(1.19)

(1.20)

(1.21)

(1.22)

Подставляя коэффициенты , , и в равенства (1.162) и (1.172), получим два условия, связывающие коэффициенты a, b, c, d, a2, b1, b2:

(1.23)

(1.24)

Итак, установлена следующая теорема:

Теорема 1.2 Система (1.14) имеет частный интеграл (1.13), коэффициенты которого выражаются формулами (1.19) - (1.22), при условии, что коэффициенты системы связаны соотношениями (1.23), (1.24) и b10, b20, a1=2b2.

1.3 Необходимые и достаточные условия существования у системы (1.1) двух частных интегралов (1.3), (1.13)

В разделах 1.1-1.2 мы получили, что система (1.1) будет иметь два частных интеграла в виде кривых второго порядка при условии, что коэффициенты системы связаны соотношениями:

(1.25)

Причем b10, b20, a10, b1a-b2b0.

Выражая c из первого уравнения системы (1.25), получим

(1.26)

Подставим (1.26) во второе и третье уравнения системы (1.25). Получим два соотношения, связывающие параметры a, b, d, a2, b1, b2:

Пусть и

(1.27)

Из первого уравнения системы (1.27) получим

Подставляя во второе уравнение системы (1.27), найдем

.

Из соотношений (1.25) при условиях (1.27) получаем, что коэффициенты системы (1.1) определяются следующими формулами:

(1.28)

(1.29)

(1.30)

, , ,

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее