85596 (589845), страница 3
Текст из файла (страница 3)
б) Объем определяющего понятия уже объема определяемого понятия. Последнее относится к первому как род к виду.
В качестве примера рассмотрим следующее определение: «Ромбом называется прямоугольнике двумя конгруэнтными смежными сторонами». Здесь по существу определен квадрат (более узкое понятие, чем ромб). Эта ошибка в определении данного понятия возникает потому, что указанный видовой признак (прямоугольник - параллелограмме двумя конгруэнтными смежными сторонами) принадлежит лишь подмножеству множества ромбов, квадратам, т.е. является отличительным лишь для части множества ромбов. Такое определение в логике называется слишком узким.
2) Определение не должно заключать в себе «порочного круга», т.е. нельзя строить определение так, чтобы определяемое понятие определялось (скрытым или явным образом) посредством того же самого определяемого понятия.
Нарушение этого правила также ведет к ошибкам двоякого рода:
а) Определяемое понятие характеризуется таким определяющим понятием, содержание которого становится ясным лишь при помощи самого определяемого понятия.
Так, например, определения «сложение есть действие нахождения суммы» и «суммой называется результат сложения» содержат в себе такой «порочный круг». Определяющее понятие суммы в этом случае не может быть определено независимо от определяемого понятия - понятия сложения.
б) Определяемое и определяющее понятия по содержанию тождественны, хотя могут быть выражены в различных словах.
Такое определение носит название тавтологии.
Например, «прямой угол - это угол в 90°», или «Прямым углом называется угол, стороны которого перпендикулярны».
Итак, в этих ошибочных определениях сущность определяемого объекта не раскрывается; в определяющем понятии повторяется то, что уже известно об определяемом понятии.
3) Определение по возможности не должно быть отрицательным. Это означает, что следует избегать таких определений, которых видовое отличие выступает в качестве отрицательного понятия.
Иногда в математике все же используют «отрицательные» определения, в частности, если в них указываются признаки, не принадлежащие определенному понятию.
Однако в процессе обучения математике такие определения нежелательны, поскольку они почти не раскрывают содержания понятия, его существенных свойств, а указывают лишь на те свойства, которые не должны иметь определяемые понятия.
Если при введении нового понятия ограничиться только формулировкой его определения и иллюстрацией этого понятия только одним примером, взятым из учебника, не показывая его наглядные модели, то учащиеся нередко усваивают такие понятия неправильно. У учащихся это чаще всего проявляется в попытке незаконных обобщений понятия (обобщений по несущественным признакам) и смешении существенных признаков с несущественными. Типичной ошибкой такого рода является, например, неузнавание учащимися знакомой геометрической фигуры, если та имеет непривычную форму или положение на плоскости.
В частности, учащиеся не «узнают» равнобедренный треугольник, данный в положении, указанном на рисунке 6, а испытывают большие затруднения в установлении пар подобных треугольников в ситуации, изображенной на рисунке 6, б и т.п.
Большое значение для сознательного усвоения учащимися важнейших математических понятий имеет система целенаправленных устных вопросов и упражнений, например, таких:
1. Найдите ошибку в следующих определениях (уточните каждое из этих определений):
а) равносильными уравнениями называются такие два уравнения, когда корни первого уравнения являются корнями второго;
б) прямая, делящая сторону треугольника пополам, называется медианой;
в) отрезок, соединяющий середины двух сторон треугольника и равный половине третьей стороны, называется средней линией треугольника.
2. Приведите примеры, указывающие на недостаточность следующих определений:
а) касательной к кривой называется прямая, имеющая с кривой только одну общую точку (см. рис.7);
Рис.7
б) если расстояние от любой точки одной линии L1 до другой L2 всюду одинаково, то такие линии называются параллельными (см. рис.8) и т.д.
Итак, в процессе введения и изучения в школе математических понятий полезно:
1) не вводить новых понятий формально; детально конкретизировать новые абстрактные понятия; по возможности применять конкретно-индуктивный метод;
2) вводить понятия наиболее естественным для учащихся путем; по возможности, следует чаще привлекать учащихся к самостоятельному изучению и определению рассматриваемого понятия;
3) мотивировать вводимые понятия, термины, определения; не допускать у учащихся представления о произвольности введения новых понятий;
4) в процессе изучения новых понятий полезно выявить связи нового понятия с уже известными понятиями; указывать на аналогию в характеристике новых понятий и понятий известных;
5) на каждом уроке полезно повторять определения известных учащимся важнейших математических понятий, связанных с понятиями, рассматриваемыми на данном уроке, требуя в то же время не столько запоминания определений понятий наизусть, сколько правильной передачи сущности определения данного понятия;
6) при овладении учащимися теми или иными математическими понятиями строго следить за речью учащихся, требовать четкости, краткости и строгости в формулировках определений. Следует иметь в виду, что «профилактика» ошибок эффективнее их исправления. Заниматься такой профилактикой учителю нужно постоянно.
1.3. Понятие дроби
Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис). При измерении оказалось, что отрезок х состоит из трех отрезков, е, и отрезка, который короче отрезка е. В этом случае длина отрезка х не может быть выражена натуральным числом. Однако, если отрезок е разбить на 4 части, то отрезок х окажется состоящим из 14 отрезков, равных четвертой части отрезка е. И тогда, говоря о дине отрезка х, мы должны указать два числа 4 и 14: четвертая часть отрезка е укладывается в отрезке точно 14 раз. Поэтому условились длину отрезка х записывать в виде Е, где Е – длина единичного отрезка е, а символ
называют дробью.
В общем виде понятие дроби определяют так. Пусть даны отрезок х и единичный отрезок е, длина которого Е. Если отрезок х состоит из m отрезков, равных n-ой части отрезка е, то длина отрезка х может быть представлена в виде , где символ
называют дробью.
К записи дроби числа m и n – натуральные, m – называется числителем, n – знаменателем дроби.
Дробь называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или равен ему.
Вернемся к рис., где показано, что четвертая часть отрезка е уложилась в отрезке х точно 14 раз. Очевидно, это не единственный вариант выбора такой части отрезка е, которая укладывается в отрезке х целое число раз. Можно взять восьмую часть отрезка е, тогда отрезок х будет состоять из 28 таких частей и длина его будет выражаться дробью . Можно взять шестнадцатую часть отрезка е, тогда отрезок х будет состоять из 56 таких частей и его длина будет выражаться дробью
.
Вообще длина одного и того же отрезка х при заданном единичном отрезке е может выражаться различными дробями, причем, если длина выражена дробью , то она может быть выражена и любой дробью вида
, где к – натуральное число.
Теорема. Для того чтобы дроби и
выражали длину одного и того же отрезка, необходимо и достаточно, чтобы выполнялось равенство mg = np
Определение: Две дроби и
называются равными, если mg = np. Если дроби равны, то пишут
=
.
Например =
, так как 17 х 21 = 119 х 3 = 357, а
≠
, потому что 17 х 27 = 459,19 х 23 = 437 и 459 ≠ 437.
Из сформулированных выше теоремы и определения следует, что две дроби равны тогда и только тогда, когда они выражают длину и того же отрезка.
Нам известно, что отношение равенства дробей рефлексивно, симметрично и транзитивно, т.е. является отношением эквивалентности. Теперь, используя определение равных дробей, это можно доказать.
Теорема. Равенство дробей является отношением эквивалентности.
Доказательство: Действительно, равенство дробей рефлексивно: =
, так как равенство mn = mn справедливо для любых натуральных числе m и n.
Равенство дробей симметрично: =
, то
=
, так как из mg = np следует, что pn = mg (m,n,p,g ε N).
Оно транзитивно: если =
и
=
, то
=
.
В самом деле, так как =
, то mg = np, так как
=
, то ps = gr. Умножив обе части равенства mg = np на s, а равенство ps = gr на n, получим mgs = nps и nps = grs. Откуда mgs = grs или ms = nr. Последнее равенство означает, что
=
. Итак, равенство дробей рефлексивно, симметрично и транзитивно, следовательно оно является отношением эквивалентности.
Из определения равных дробей вытекает основное свойство дроби:
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.
На этом свойстве основанного сокращение дробей и приведение дробей к общему знаменателю.
Сокращение дробей – это замена данной дроби другой, равной данной, но с лишим числителем и знаменателем.
Если числитель и знаменатель дроби одновременно делятся только на единицу, то дробь называют несократимой. Например, - несократимая дробь, так как ее числитель и знаменатель делятся одновременно только на единицу, т.е. В (5; 17) = 1.
Приведение дробей к общему знаменателю – это замена данных дробей, равными им дробями, имеющими одинаковые знаменатели. Общим знаменателем двух дробей =
является общее кратное чисел n и g, а наименьшим общим знаменателем – их наименьшее.
1.4. Введение и формирования математического понятия дроби на уроках математики
Всякое понятие, в том числе математическое, является абстракцией от множества конкретных объектов, которые описываются им. В понятии отражаются устойчивые свойства изучаемых объектов, явлений. Эти свойства повторяются у всех объектов, которые объединяются понятием. Но каждый реальный объект имеет некоторые другие свойства, присущие только ему. Различие в несущественных свойствах только оттеняет, подчеркивает существенные.
Формирование математических абстракций может привести к формализму в знаниях учащихся, если оперирование ими будет бессодержательно, если за каждой абстракцией ученик не увидит наглядной мысленной картины, т.е. образа. Игнорирование практической деятельности учеников с материальными или материализованными объектами, которые несут наглядное знание и формируют образы, приводит к появлению поверхностных знаний, а иногда и к отсутствию их.
Обыкновенная дробь является, по существу, первой глубокой математической абстракцией, которая встречается в школьном курсе. Пренебрежение учителем содержательной стороной изучаемых понятий, быстрый переход к формальному оперированию дробями без достаточно надежной опоры на наглядность приводят к тому, что слабые, а то и средние ученики не понимают изучаемого материала. Порой за обозначением 3/5 ученик не видит никакого образа. Для такого ученика и операции над дробями превращаются в серию непонятных процедур, последовательность которых ему приходится просто запоминать.
Формированию верного представления о понятии «обыкновенная дробь» и умению пользоваться им способствуют практические работы с материализованными объектами. Ниже приведены некоторые из материалов, по которым целесообразно проводить такую работу.