62528 (588798), страница 4

Файл №588798 62528 (Коммутация в сетях с использованием асинхронного метода переноса и доставки) 4 страница62528 (588798) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Рисунок 2.2 - Структура коммутатора с разделенной памятью:

RA - чтение адреса; WA- запись адреса; S/P – последовательно параллельное преобразование; P/S - параллельно-последовательное преобразование

Данный метод подразумевает организацию очередей на выходных портах, где все буферы формируют единое пространство памяти. Он привлекателен тем, что дает возможность вплотную приблизиться к теоретическому пределу производительности. Совместный доступ к буферной памяти минимизирует ее емкость, удерживая долю потерянных ячеек в заданных границах: при резком росте интенсивности трафика в направлении какого-либо выходного порта разделение памяти позволяет максимально сгладить пик нагрузки за счет использования свободной части буфера.

Коммутатор Prelude, разработанный фирмой СМЕТ, был одним из первых устройств, применяющих тактированную обработку с групповой буферизацией. Другие широко известные примеры — коммутатор с разделяемой буферной памятью компании Hitachi и устройство GCNS-2000 корпорации AT&T.

Правда, этот метод не свободен от недостатков. Разделяемая память должна работать по крайней мере в N раз быстрее одиночного порта, поскольку ячейки считываются и записываются в память последовательно. Время доступа к памяти — конечная величина, как и произведение числа портов на скорость обмена через порт (NV). Кроме того, необходимо, чтобы централизованный контроллер памяти успевал обрабатывать заголовки ячеек и тэги маршрутизации с той же скоростью, что и память. Чтобы преодолеть серьезные технические трудности, возникающие при использовании множественных классов приоритета трафика, при сложном распределении ячеек, многоадресной и широковещательной передаче, требуется высокое быстродействие памяти и контроллера [1,16].

2.16 МЕТОД ОБЩЕЙ СРЕДЫ

Ячейки могут передаваться через общую среду — кольцо, шину или двойную шину. Примером данного метода является шина с временным разделением (ТОМ), представленная на рисунке 3. Входящие ячейки передаются на шину циклически. На каждом выходе адресные фильтры (Address Filter, AF) в соответствии с тэгами маршрутизации считывают и пересылают свои ячейки в выходные буферные устройства. Дабы не допустить переполнения входной очереди, скорость шины должна быть равной по крайней мере NV ячейкам/с [8,9].

Рисунок 2.3 - Коммутатор с общей средой на базе шины с временным разделением: AF- адресный фильтр; S/P – последовательно-параллельное преобразование; P/S – параллельно-последовательное преобразование

Модуляция выходных каналов упрощает работу адресных фильтров, а широковещательная передача с селекцией — функционирование всей системы. На методе общей среды основана работа нескольких коммутаторов, включая Paris и plaNet компании IBM, Atom корпорации NEC, Fore-Rurmer ASX-100 производства Fore Systems, Синхронная коммутация составных пакетов (Synchronous Composite Packet Switching, SCPS), использующая множественные кольца, — еще один вариант коммутации с обшей средой. Следует отметить, что возможности масштабирования коммутаторов данного типа оказываются ограниченными, поскольку адресные фильтры и выходные буферы должны действовать со скоростью, в N раз превосходящей скорость передачи портов. Кроме того, выходные буферы здесь не являются общими для N портов, а значит, для сохранения прежней вероятности потерь ячеек требуется, большая суммарная емкость буферов, чем в случае применения метода с разделяемой памятью [16].

2.17 МЕТОД ПОЛНОСВЯЗНОЙ ТОПОЛОГИИ

Отличительная особенность данного метода — существование независимого пути для каждой из N2 возможных пар входов и выходов (рисунок 2.4). Таким образом, входящие ячейки транслируются на раздельные шины выходных каналов, а адресные фильтры пропускают эти ячейки в выходные очереди [14].

Рисунок 2.4 – Коммутатор с полносвязанной топологией: AF- адресный фильтр; В – буферы

Преимущества рассматриваемого типа коммутации заключаются в том, что буферизация ячеек происходит на выходных портах и (как в методе с общей средой) отсутствуют ограничения на групповую и широковещательную передачу. Реализация адресных фильтров и выходных буферов достаточно проста: нужно лишь обеспечить требуемую скорость обмена через порт. Метод полносвязной топологии допускает простое масштабирование в широких пределах и позволяет достичь высокой скорости функционирования коммутатора, поскольку все его аппаратные модули работают с одной и той же скоростью.

Примерами использования описанного подхода являются устройства с матричной шиной фирмы Fujitsu и система SPANet компании GTE.

К сожалению, квадратичный рост числа буферов ограничивает количество выходных портов, хотя скорость обмена через порт лимитируется только физическим быстродействием адресных фильтров и выходных буферов.

Устройство The Knockout, разработанное AT&T, было первым прототипом коммутаторов, в которых число буферов уменьшалось ценой небольшого увеличения потерь ячеек. Вместо N буферов на каждом выходе использовалось меньшее фиксированное число буферов L, а общее число буферов составляло NL. Этот подход базируется на предположении, что вероятность одновременного поступления на выходной порт более L ячеек мала. Оказывается, при больших N произвольных (но однородных) параметрах трафика восьми буферов на порт достаточно для удержания доли потерь в пределах одной ячейки из миллиона [14,8].

2.18 МЕТОД ПРОСТРАНСТВЕННОГО РАЗДЕЛЕНИЯ

Простейшим примером системы с пространственным разделением является коммутатор матричного типа, обеспечивающий физическую взаимосвязь с любым из N входных и N выходных портов. Хорошо известны коммутаторы матричного типа с производительностью в сотни гигабит в секунду, в которых применяются входная и/или выходная буферизация и двунаправленный алгоритм разделения памяти. В целях сокращения числа коммутационных элементов (кроссов), которые необходимы для внутренней коммутации каналов, организации взаимосвязей между вычислительными узлами в многопроцессорных системах и, позднее, коммутации пакетов и ячеек ATM, были разработаны многокаскадные сети (Multistage Interconnection Network, MIN), представляющие собой древовидные структуры [6,12].

Баньяновидные сети (свое название они получили потому, что схожи по форме с одноименным тропическим деревом), один из наиболее широко представленных типов сетей MIN, строятся путем формирования каскадов коммутационных элементов [5,6,12]. Основной коммутационный элемент 2x2 обрабатывает входящую ячейку в соответствии с управляющим битом выходного адреса. Если этот бит равен нулю, то ячейка направляется на верхний выходной порт кросса, в противном случае — на нижний.

Рисунок 2.5 - Баньяновидная сеть 8x8

На рисунке 2.5 показано последовательное соединение коммутационных элементов, формирующих Баньяновидную сеть 8x8. Сеть 8x8 формируется рекурсивно, при этом первый бит применяется для транспортировки ячейки через первый каскад, а последние два бита — для маршрутизации ячейки через сеть 4x4 на соответствующий выходной порт.

Итак, в Баньяновидной сети NN n-й каскад выбирает направление передачи ячейки по n-му биту выходного адреса. При N=2n такая сеть состоит из (N/2)\log N элементарных двоичных кроссов. Сети MIN способны автоматически обновлять таблицы маршрутизации (т.е. имеют свойство самомаршрутизации), в случае если выходной адрес полностью определяет маршрут следования ячейки через сеть.

Популярность Баньяновидных сетей объясняется использованием простых коммутационных элементов для обеспечения процесса коммутации; при этом ячейки передаются параллельно и все элементы действуют с одной и той же скоростью (так как нет дополнительных ограничений на размер N или скорость V). При создании больших коммутаторов указанные свойства позволяют легко реализовать модульный рекурсивный подход на уровне аппаратных средств. Коммутаторы Sunshine компании Bell-core и 1100 подразделения Alcatel Data Networks — типичные примеры устройств, в которых применяется данный подход.

Отрицательным свойством Баньяновидных сетей является их принадлежность к блокирующим схемам, причем вероятность блокировки ячейки при ее маршрутизации быстро возрастает с ростом сети [8]. Очевидно, что в таких сетях существует единственный путь с любого входного порта на любой выходной. Регулярные Баньяновидные сети используют только один тип коммутационных элементов. В их разновидности (так называемых SW-Баньяновидных сетях) вероятность блокировки ячеек удается уменьшить, применяя кроссы больших размеров, — они строятся рекурсивно из коммутационных элементов размером LМ, где L>2 и М>2.

Дельта-сети представляют собой подкласс SW - Баньяновидных сетей и обладают свойством самомаршрутизации. Существует несколько типов дельта-сетей: прямоугольная (кроссы имеют одинаковое число входов и выходов), базовая (baseline), омега, флип, куб, обратный куб и др. Сеть дельта-b размером NN содержит logbN каскадов, причем каждый каскад состоит из N/b коммутационных элементов bЬ.

Как уже говорилось, число точек коммутации в Баньяновидных сетях меньше N2, что может приводить к конфликту маршрутов двух ячеек, адресованных на разные выходные порты. При возникновении подобной ситуации, именуемой внутренней блокировкой, лишь одна из двух ячеек способна достичь следующего каскада, а в результате общая производительность снижается.

Одно из решений проблемы состоит в добавлении специальной сети предварительной сортировки (например, так называемого сортировщика Батчера), которая направляет ячейки в Баньяновидную сеть. Сортировщик позволяет избежать блокировок при адресации ячеек на различные выходные порты, но если они одновременно адресуются на один и тот же выход, единственным решением становится буферизация [8,1,14].

2.19 РАЗДЕЛЕНИЕ БУФЕРОВ

Число и размер буферов имеют важное значение при разработке коммутатора. В устройствах с общей памятью централизованный буфер зачастую имеет преимущество перед средствами статистического разделения. Принимая интенсивный поток ячеек на некоторый выходной порт, коммутатор выделяет для них максимально возможную часть буферного пространства, что приводит к экономии последнего, поскольку ячейки поступают на различные порты случайным образом [1,12].

Для коммутационного поля с TDM-шиной и N выходными буферами большая группа ячеек, одновременно поступивших на какой-либо выход, естественно, не может быть принята другим выходным буфером. Тем не менее каждый выходной буфер способен статистически мультиплексировать трафике N входов.

В структурах с N2 выходными буферами, имеющих полносвязную топологию, статистическое мультиплексирование между выходными портами или на любом выходном порте невозможно. В этом случае размер буферного пространства растет экспоненциально.

Буферы могут быть установлены на входе сети Батчера (рисунок 2.6).

Рисунок 2.6 - Входная буферизация

Однако в этом случае возможна блокировка очереди ячейкой, находящейся в ее начале направляемой на занятый выходной порт, даже если выходные порты ячеек, расположенных позади данной, свободны [1,3,5].

В такой ситуации способна выручить дисциплина «пришедший первым обслуживается в случайном порядке» (First In Random Out, FIRO), но, к сожалению, она не имеет простой реализации. Другой способ избежать конфликтов маршрутов — установить буфер непосредственно внутри коммутационных элементов Баньяновидной сети. Если две ячейки одновременно направляются в один и тот же выходной канал, одна из них буферизуется внутри коммутационного элемента. Внутренняя буферизация используется и механизмом управления с помощью обратной блокировки (backpressure): очереди в одном каскаде сети задерживают ячейки предыдущего каскада сигналом обратной связи. Влияние процедуры обратной блокировки может достигнуть первого каскада и привести к созданию очередей на входах. Следует отметить, что внутренняя буферизация способна вызвать блокировку ячейки в начале очереди на каждом коммутационном элементе и, следовательно, не позволяет достичь максимальной производительности.

Еще один вариант — использование рециркуляционного буфера, внешнего к коммутационному полю (рисунок 2.7).

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее