48698 (588601)

Файл №588601 48698 (Разработка устройства кодирования-декодирования 32-х разрядных слов методом Хемминга)48698 (588601)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

СОДЕРЖАНИЕ

Введение

1 Анализ способов кодирования информации

1.1 Проверка чётности

1.2 Код CRC

1.3 Код Хэмминга

1.4 Код Рида – Соломона

2 Разработка стенда контроля передаваемой информации

2.1 Разработка устройства кодирования (кодера) информации методом Хемминга

2.2 Разработка устройства декодирования (декодера) информации методом Хемминга

2.3 Реализация кодера – декодера на базе ИМС К555ВЖ1

2.3.1 Цоколёвка ИМС К555ВЖ1 (SN74LS630)

2.3.2 Разработка принципиальной схемы устройства

2.3.3 Принцип работы устройства

3. Экономическая часть

4 Охрана труда и техники безопасности

4.1 Потенциально опасные и вредные производственные факторы

4.2 Обеспечение электробезопасности

4.3 Обеспечение санитарно-гигиенических требований к помещениям учебных лабораторий

4.4 Противопожарная защита

Заключение

Список ссылок





Введение

Характерной чертой научно-технического прогресса, определяющей мощный дальнейший подъем общественного производства, является широкое внедрение электроники во все отрасли народного хозяйства. Стремительное развитие промышленности и технологий, определило дальнейшее развитие науки на несколько поколений вперёд. Одним из самых приоритетных направлений науки является микроэлектроника, позволившая достичь высочайших технологий, которые, в свою очередь, нашли широчайшее применение как в промышленности, так и в научной сфере. Стык этих двух сфер сформировал величайшее изобретение современности – цифровой электронный компьютер.

Парк компьютеров разнообразного назначения растёт стремительными темпами. В настоящее время персональный компьютер является неотъемлемой частью любого предприятия, учебных заведений, вычислительных центров, и других учреждений. С каждым днем растут объемы передаваемой и принимаемой информации. В связи с этим становится особенно актуальной проблема сохранения целостности передаваемой и обрабатываемой информации. Память компьютера время от времени может делать ошибки из-за всплесков напряжения на линии электропередачи и по другим причинам. Передача информации также сопряжена с различного рода ошибками. Чтобы бороться с такими ошибками, были разработаны специальные способы кодирования информации, позволяющие обнаружить и исправить возможные ошибки. Существует большое количество видов помехоустойчивого кодирования. Некоторые виды настолько сложны, что требуют создания специального математического аппарата, другие же, напротив, достаточно просты и понятны. Эффективность разных способов кодирования существенно различается. Изучение методов кодирования часто становится проблемой из-за излишней математизированости материала и недостаточной наглядности. Между тем, возможно самостоятельное изготовление простого электрифицированного стенда, которое не приведет к значительным материальным затратам. Это позволяет сформулировать рабочую гипотезу исследования: изготовление и использование электрифицированного учебного стенда позволит повысить наглядность работы устройств кодирования/декодирования и, как следствие, качество усвоения материала студентами, что говорит об актуальности выбранной темы.

Целью дипломного проекта является разработка относительно недорого электрифицированного стенда «Устройство кодирования – декодирования 32х разрядных слов методом Хэмминга». В ходе написания дипломного проекта использовались следующие методы: исследование проблемы, анализ возможных путей решения, проектирование и модернизация стенда.

1 Анализ способов кодирования информации

История кодирования, контролирующего ошибки, началась в 1948 г. публикацией знаменитой статьи Клода Шеннона. Шеннон показал, что с каждым каналом связано измеряемое в битах в секунду и называемое пропускной способностью канала число С, имеющее следующее значение. Если требуемая от системы связи скорость передачи информации R (измеряемая в битах в секунду) меньше С, то, используя коды, контролирующие ошибки, для данного канала можно построить такую систему связи, что вероятность ошибки на выходе будет сколь угодно мала. Основной сдвиг произошел, когда Боуз и Рой-Чоудхури и Хоквингем нашли большой класс кодов, исправляющих кратные ошибки (коды БЧХ), а Рид и Соломон нашли связанный с кодами БЧХ класс кодов для недвоичных каналов. Хотя эти коды остаются среди наиболее важных классов кодов, общая теория блоковых кодов, контролирующих ошибки, с тех пор успешно развивалась.

Код есть форма представления сообщения, не зависящая от его физической сути. Это отличает код от сигнала, который определяет физическое представление сообщения (и кода) в системе связи. На практике часто связывают абстрактную (символьную) форму кода с физическими сигналами, называя код частотным, временным, фазовым, амплитудным. Код представляют совокупностью (кодовых) символов; помехоустойчивый код позволяет обнаруживать или исправлять ошибки в совокупности кодовых символов. Если сообщения обладают внутренними корреляционными связями, т. е. если одно сообщение некоторым образом зависит от другого, как это обычно бывает при передаче текстов на естественных языках, то помехоустойчивость любого кода может быть повышена за счет статистических связей между сообщениями. Если эти связи слабые, или неизвестны, или их нельзя использовать для повышения помехоустойчивости, то в этом случае форма представления сообщения должна быть избыточной; в частности, число символов в коде сообщения увеличивают, а между кодовыми символами вводят искусственные корреляционные связи. Поэтому в некоторых случаях помехоустойчивые коды называют избыточными. Введение избыточности в код позволяет помимо обнаружения и исправления ошибок повысить энергетическую эффективность линии связи, сузить частотный спектр передаваемого сигнала, сократить время вхождения в связь путем повышения помехозащищенности тракта синхронизации, улучшить корреляционные свойства ансамбля сигналов, простыми средствами реализовать разнесенный прием. Вид помехоустойчивого кода зависит от структуры системы связи, обобщенная схема которой приведена на рис. 1.1. Рассматриваем системы связи, передающие только дискретные сообщения. В современных системах передачи дискретных сообщений последние поступают на вход системы, как правило, от нескольких источников. Даже если внешний источник один, сама система связи содержит источник сигналов служебной связи, телеуправления и телесигнализации (ТУ-ТС). Скорость поступления сообщений от разных источников может быть как одинаковой, так и различной синхронной с собственной тактовой частотой аппаратуры связи или асинхронной с ней. Блок уплотнения (БУ) объединяет сообщения, поступающие от разных источников, в единую последовательность, как правило, двоичных символов с тактовой частотой, соответствующей скорости передачи системы связи.





Рис. 1.1 — Схема системы связи

  • ИИ - источник информации;

  • БУ - блок уплотнения сообщений;

  • КДШ, КДВ - кодеры внешний, внутренний;

  • ПРШ, ПРВ - перемежители внешний, внутренний;

  • М - модулятор;

  • ПД - передатчик;

  • ЛС - линия связи;

  • ПР - приемник;

  • Д - демодулятор;

  • АЦП - аналого-цифровой преобразователь;

  • БДС, БПС, БЛС - блоки додетекторного, последетекторного, логического сложения;

  • ДПШ, ДПВ - деперемежители внешний, внутренний;

  • ДКШ, ДКВ - декодер внешний, внутренний;

  • БР-блок разуплотнения сообщений;

  • ПИ-получатель информации;

  • КОС - канал обратной связи

Если скорости поступления сообщений от источников асинхронны по отношению к собственной тактовой частоте системы связи, БУ осуществляет асинхронный ввод сообщений. Для того чтобы при временном уплотнении различить сообщения на стороне приема, БУ формирует маркер, обозначающий место первого источника в общем цифровом потоке. Маркер повторяется периодически, образуя сигнал цикловой синхронизации. Кодер вводит избыточность в передаваемый поток двоичных символов, причем кодирование сообщений в зависимости от требуемой степени повышения помехоустойчивости может выполняться поэтапно и соответственно этапам различными кодерами. Первый после БУ кодер называют внешним (КДШ), последний - внутренним (КДВ). Сформированный кодером поток символов поступает в перемежитель. Во многих случаях ошибка в одном символе кода влечет за собой ошибки и в других смежных с ним символах той же последовательности, вызывая появление пакета ошибок на входе декодера, исправляющего ошибки. Если код рассчитан на исправление m ошибок на интервале из n смежных символов, а пакет ошибок вызывает больше чем m ложных символов, ошибка декодером не будет исправлена. Перемежитель разносит во времени смежные символы исходной кодовой последовательности более чем на n символов. При деперемежении на стороне приема разнесенные символы вновь собирают вместе; одновременно ошибки в пакете будут разнесены деперемежителем во времени более чем на n символов, и соответствующий деперемежителю декодер такие разнесенные ошибки сможет исправить. Перемеженная последовательность кодированных символов поступает в общем случае в несколько ветвей разнесения, каждая из которых содержит модулятор, передатчик, линию связи и приемник. В системах с линиями радиосвязи для борьбы с замираниями и узкополосными помехами, действующими в части частотного диапазона, применяют программную (или, как ее иногда называют, псевдослучайную) перестройку рабочих частот (ППРЧ), соответствующие устройства входят в состав передатчика и приемника.

Сложение сигналов в разнесенных ветвях на стороне приема может производиться как на входе демодулятора (додетекторное сложение), так и на его выходе (последетекторное сложение). В частности, если сигналы в ветвях некогерентны, последетекторное сложение называют квадратичным. Сравнительно недавно в системах связи с кодированными сигналами стали применять логическое объединение ветвей разнесения, реализующее последетекторный автовыбор ветви с наименьшим числом ошибок. Демодулятор (Д) производит оптимальную обработку элемента сигнала, заканчивающуюся обычно интегрированием со сбросом интегратора в определенный тактовый момент времени. Тем самым демодулятор дискретизирует во времени смесь огибающей сигнала с шумом. Формирование тактовых импульсов осуществляют устройства тактовой синхронизации, входящие в состав демодулятора. Аналого-цифровой преобразователь (АЦП) на выходе демодулятора дискретизирует (квантует) смесь огибающей сигнала с шумом по уровню. При квантовании на два уровня декодируется двоичный сигнал. Максимальное число уровней квантования, как правило, не превышает 16. Обычно число уровней равно 2, 4, 8 или 16. Декодер, работающий с двоичным сигналом, называют жестким, с недвоичным - мягким. Для работы декодера необходимы специфические (групповые) тактовые импульсы, формируемые в тракте групповой синхронизации, входящем в состав декодера. Назначение декодера состоит в уменьшении числа ошибок в сообщениях, выдаваемых системой связи, путем использования избыточности, заложенной в символьный поток кодером. Часть системы связи, включающая линию (радио- или проводную), называется каналом. Часть системы от выхода модулятора до входа АЦП образует канал передачи-приема сигнала, непрерывного по уровню (но дискретного по времени). Часть системы от выхода модулятора до выхода АЦП образует канал с входным сигналом, непрерывным по уровню и времени, и с выходным дискретным сигналом. От входа модулятора до выхода АЦП имеем дискретный (по времени и уровню) канал. В двунаправленной системе связи обычно создают канал обратной связи, по которому осуществляют управление работой системы.

Схема на рис. 1.1 может видоизменяться в зависимости от конкретной реализации системы связи. В каналах действуют искажения сигналов, шумы, помехи, которые в дискретном канале проявляются в виде перехода одного значения символа в другое - ложное (событие, состоящее в появлении ошибки) или неиспользуемое (событие, которое называют стиранием). В зависимости от характера ошибок различают дискретные каналы: симметричный (все ложные значения символов равновероятны), асимметричный (некоторые ложные значения символов обладают большей вероятностью), без памяти (искажение символа не зависит статистически от искажения другого выходного символа), с памятью (искажение символа выходной последовательности зависит статистически от искажения другого символа той же последовательности), со стираниями (наряду с ошибками имеют место стирания символов).

Любой канал связи с ограниченными полосой частот, временем передачи и динамическим диапазоном (значений амплитуд) обладает конечной пропускной способностью. Теоретически пропускная способность - это максимальное число переданных двоичных единиц (бит) в единицу времени при сколь угодно малой вероятности ошибок. Реально получаемое число передаваемых бит в единицу времени называют скоростью передачи. При неограниченно малой вероятности ошибок скорость передачи всегда меньше пропускной способности. В канале с ошибками максимальное значение скорости получают путем использования помехоустойчивого кодирования. Последнее требует введения избыточности в передаваемый сигнал: по времени, частоте или амплитуде. Если код согласован с каналом, т. е. код позволяет исправлять наиболее вероятные ошибки, введенная избыточность становится оправданной. Если код не согласован с каналом, ошибки могут быть не только не исправлены, но и размножены кодом. В этом случае применение помехоустойчивого кодирования принесет не пользу, а вред. Для согласования кода с каналом связи необходимо иметь максимальный объем сведений о возможных мешающих влияниях в каналах.

Рис. 1.2 — Классификация помехоустойчивых кодов

К настоящему времени разработано иного различных помехоустойчивых кодов, отличающихся друг от друга основанием, расстоянием, избыточностью, структурой, функциональным назначением, энергетической эффективностью, корреляционными свойствами, алгоритмами кодирования и декодирования, формой частотного спектра. На рис 1.2 приведены типы кодов, различающиеся по особенностям структуры, функциональному назначению, физическим свойствам кода как сигнала. Наиболее важный подкласс непрерывных кодов образуют сверточные коды, отличающиеся от других непрерывных кодов методом построения и более широкой областью применения. В общем случае чем длиннее код при фиксированной избыточности, тем больше расстояние и тем выше помехоустойчивость кода. Однако длинные коды сложно реализуются. Составные коды дают компромиссное решение задачи, из них основное значение имеют каскадные коды и коды произведения. Как правило, каскадный код состоит из двух ступеней (каскадов): внутренней и внешней. По линии связи сигналы передают внутренним кодом nвт, символьные слова которого являются символами внешнего кода длины nвш. Основание внешнего кода равно qвтk. Коды произведения строят в виде матрицы, в которой строки суть слова одного кода, а столбцы - того же или другого кода. При формировании каскадного кода входную информационную последовательность символов разбивают на блоки по kвт символов в каждом, каждый блок сопоставляют с информационным символом внешнего кода из алфавита, содержащего qвтk значений символов. Затем kвш информационных символов внешнего кода преобразуют в блоки из nвш символов внешнего кода и, наконец, блоки из kвт информационных символов внутреннего кода преобразуют в блоки из nвт символов внутреннего кода. Возможны различные варианты: внешний и внутренний коды - блочные, внешний блочный - внутренний сверточный, внешний сверточный - внутренний блочный, внешний и внутренний сверточные.

Один из наиболее распространенных методов формирования кода произведения заключается в последовательной записи по k1 символов входной информационной последовательности в k2 строк матрицы (например, в ячейки памяти ОЗУ), добавлении избыточных символов по n1-k1 в каждую строку и по n2-k2 в каждый столбец, после чего в последовательность символов кода считывают по строкам или столбцам из матрицы. Физическим аналогом кода произведения является, в частности, частотно-временной код, у которого строки располагаются вдоль оси времени, а столбцы - по оси частот.

Параметры составных кодов: каскадных - n=nвшnвт, k=kвшkвт, d=dвшdвт; произведения - n=n1n2, k=k1k2, d=d1d2. Производные коды строят на основе некоторого исходного кода, к которому либо добавляют символы, увеличивая расстояние (расширенный код), либо сокращают часть информационных символов без изменения расстояния (укороченный код), либо выбрасывают (выкалывают) некоторые символы (выколотый, или перфорированный код). Код Хэмминга дает пример процедуры расширения, увеличивающей расстояние кода с 3 до 4. Необходимость в выкалывании возникает в результате построения на основе исходного кода другого, менее мощного, более короткого кода с тем же расстоянием. При более широкой трактовке термина "производный код" к этому классу можно отнести все коды, полученные из исходного добавлением или исключением как символов, так и слов.

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
313
Средний доход
с одного платного файла
Обучение Подробнее