15139 (585582), страница 6

Файл №585582 15139 (Кореляційний аналіз виробництва льоноволокна) 6 страница15139 (585582) страница 62016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Бачимо, що при урожайності льоноволокна меншою за 8 ц/га, залежність між урожайністю льоноволокна та якістю льонотрести є помірною, а при урожайності льоноволокна більше за 8 ц/га, залежність між урожайністю льоноволокна та якістю льонотрести є тісною.

Дослідимо криволінійну кореляцію між ознаками Х та . Дослідимо окремо участки та :

Бачимо, що при урожайності льоноволокна меншою за 8 ц/га, залежність між урожайністю льоноволокна та витратами праці на 1 центнер льонотрести є помірною, а при урожайності льоноволокна більше за 8 ц/га, залежність між урожайністю льоноволокна та витратами праці на 1 центнер льонотрести є слабкою.

Дослідимо криволінійну кореляцію між ознаками У та . Дослідимо окремо участки та :

Бачимо, що при залежність між якістю льонотрести та витратами праці на 1 центнер льонотрести є прямою помірною, а при залежність між якістю льонотрести та витратами праці на 1 центнер льонотрести є зворотньою функціональною.

3.3 Множинна кореляція

Двомірні кореляційні моделі ( парна кореляція) використовуються у випадках, коли серед чинників, що впливають на результативну ознаку, є домінуючий. Такі зв'язків небагато, частіше зустрічаються залежності результативної ознаки від декількох факторних, оскільки економічні явища знаходяться під впливом значного числа одночасно і чинників, що сукупно діють.

Завдання множинного кореляційно-регресійного аналізу в загальному вигляді формулюється таким чином: Хай деяка статистична сукупність, що складається з n одиниць спостереження володіє певним набором ознак, один з яких грає роль результативного, а останні - факторних . На основі спостережуваних значень всіх ознак потрібно виявити і описати зв'язок між ними у вигляді множинної кореляційної моделі вигляду: .

Рішення даної задачі вимагає послідовного виконання наступних етапів дослідження множинного кореляційного зв'язку:

• попередній відбір чинників, що включаються в модель;

• попередній опис зв'язку;

• уточнення моделі на основі аналізу кореляційної матриці;

• визначення тісноти зв'язку;

• оцінка надійності множинної кореляційної моделі;

• інтерпретація моделі.

Вивчення множинної регресії ( кореляції) вимагає вимірювання не тільки прямої дії кожного чинника на результат, але і обліку впливу чинників один на одного, тобто обліку наявності міжфакторних зв'язків. Загальне число зв'язків завжди значно більше числа чинників, що включаються в модель. Воно визначається виразом:

де – кількість факторних ознак, включених в модель.

У загальному випадку, при великому числі чинників, що враховуються, необхідно будувати складні моделі, що вимагають проведення складних розрахунків; моделі виходять громіздкими. З іншого боку, - чим велика кількість чинників враховується, тим адекватніше побудована модель. Для вирішення вказаного протиріччя заздалегідь обмежується число чинників, що враховуються . Доцільність їх включення в модель визначається наступними міркуваннями:

  • вони повинні бути соїзмеріми, мати кількісний вираз;

  • чинники не повинні бути інтеркорреліровани, тобто тісно зв'язаними між собою;

  • вони повинні пояснювати варіацію результативної ознаки.

При включенні в модель інтеркоррелірованних чинників неможливо визначити ізольований вплив таких чинників на результативний показник, а оцінки параметрів рівняння множинної регресії будуть ненадійними, залежними від спостережень.

Попередній опис множинного кореляційного зв'язку ( МКЗ) здійснюється через побудову відповідного рівняння регресії. Практика показує, що можна використовувати наступні п'ять функцій, оскільки вони описують всі реально існуючі залежності між соціально-економічними явищами:

1. лінійна ;

2. статечна ;

3. показова (експотенциональная);

4. параболічна;

5. гіперболічна .

Працювати з нелінійними функціями складно, тому основне значення мають лінійні моделі через їх простоту і логічність економічної інтерпретації. Нелінійні форми завжди можна привести до лінійної, використовуючи відомий в математиці прийом лінеаризації функцій. Величина кожного параметра в рівнянні прямої може бути визначена по методу найменших квадратів.

При виборі форми рівняння множинної регресії необхідно мати на увазі:

  1. Чим складніше функція, тим гірше інтерпретуються параметри моделі.

  2. Складні функції ( поліноми) з великою кількістю чинників вимагають великого числа спостережень ( на кожен параметр не менше 6 спостережень)

Остаточний відбір чинників, тобто уточнення кореляційної моделі проводиться на основі аналізу кореляційної матриці. Кореляційна матриця складається з парних лінійних коефіцієнтів кореляції юшок r, що відображають тісноту зв'язку результативної і факторної ознаки і коефіцієнтів інтеркорреляції, що відображають тісноту зв'язку між i-м і j-м факторними ознаками.

Оцінка тісноти множинного кореляційного зв'язку проводиться на основі двох показників: множинного коефіцієнта детерміації і множинного коефіцієнта кореляції .

Для двохфакторної моделі множинний коефіцієнт кореляції визначається по формулі:

Діапазон зміни множинного коефіцієнта кореляції від 0 до 1. «0» означає відсутність зв'язку, «1» - наявність функціонального множинного зв'язку між ознаками. Для класифікації тісноти зв'язку використовується шкала Чеддока.

Для оцінки надійності виявленого зв'язку порівнюється множинний коефіцієнт кореляції з лінійними кореляційними коефіцієнтами кореляції між результатом і факторними ознаками, включеними в модель. Зв'язок визнається надійним, якщо

Завершуючим етапом множинної кореляції є інтерпретація параметрів побудованої кореляційної моделі. Чим більше величина цих параметрів ( коефіцієнтів регресії), тим значніше вплив даних чинників на результат. Важливе значення мають знак перед коефіцієнтами регресії. Знак “+” свідчить про зростання результату при збільшенні факторної ознаки, знак “-” - про зменшення результату при зростанні факторного.

Опишемо зв'язок між урожайністю льоноволокну (факторна змінна Х1), витратами праці на 1 центнер льонотрести (факторна змінна Х2) та якістю льнотрести (результуюча змінна У). Для побудови моделі лінійної регресії скористаємось матричною формулою

0,29041

0,065151

-0,00789

Таким чином, економетрична модель має вигляд:

Y

X1

X2

Y^

U

0,5

4,3

2,33

0,551326

-0,05133

0,5

5,7

4,74

0,623528

-0,12353

0,5

6,6

3,33

0,693026

-0,19303

0,54

9,8

2,66

0,906252

-0,36625

0,56

3,7

4,51

0,495322

0,064678

0,56

5,9

6,67

0,621474

-0,06147

0,58

5,6

3,59

0,625998

-0,046

0,6

3,7

1,43

0,519346

0,080654

0,6

7,6

5,4

0,74188

-0,14188

0,63

5,1

7,85

0,56027

0,06973

0,64

3,7

3,94

0,499768

0,140232

0,65

5,2

5,52

0,584944

0,065056

0,65

8,7

3,28

0,829916

-0,17992

0,7

7,2

5,75

0,71315

-0,01315

0,72

6

6,63

0,628286

0,091714

0,72

10,9

6,68

0,946396

-0,2264

0,77

11,8

3,24

1,031728

-0,26173

0,78

6,3

2,32

0,681404

0,098596

0,85

7,8

6,9

0,74318

0,10682

0,88

7,5

7,25

0,72095

0,15905

0,88

12,1

10,38

0,995536

-0,11554

0,97

9,8

4,05

0,89541

0,07459

1,23

10,7

3,97

0,954534

0,275466

1,37

13,1

3,81

1,111782

0,258218

1,46

13,4

3,23

1,135806

0,324194

  1. розрахуємо коефіцієнт детермінації: . Цей показник показує, що вариація залежної змінної залежить від варіації пояснюючих змінних на 55,8%

  2. розрахуємо коефіцієнт множинної кореляції:

Бачимо, що зв'язок між пояснюючими та залежною змінними є тісним.

  1. Статистична значущість звязку, отриманого на основі економетричної моделі, оцінимо за критерієм Фішера.

Розрахуємо критичне значення критерію Фішера при рівні значущості 0,05 та ступені свободи 2 та 25:

Характеристики

Тип файла
Документ
Размер
3,5 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее