124870 (577778), страница 2

Файл №577778 124870 (Исследование частотных характеристик типовых динамических звеньев) 2 страница124870 (577778) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

При анализе характеристик апериодических звеньев (рисунок 24) можно сделать следующие выводы:

  • апериодическое звено 2-го порядка можно аппроксимировать апериодическим звеном 1-го порядка, если первая постоянная времени намного меньше второй, т.к. в таком случае влияние первой экспоненты на форму выходного сигнала несущественно.

Исследование колебательного звена

При исследовании колебательного звена необходимо пронаблюдать за характером его частотных характеристик при изменении постоянной времени и декремента затухания в пределах, указанных в индивидуальном задании. Т.е. необходимо исследовать частотные характеристики при постоянных времени и декременте затухания .

    1. Исследование частотных характеристик колебательного звена при изменении постоянной времени ( ) и неизменном декременте затухания ( )

Для исследования колебательного звена при изменении постоянной времени ( ) и неизменном декременте затухания в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 25. Логарифмические частотные характеристики колебательного звена представлены на рисунке 26, графики переходной функции – на рисунке 27.

Рисунок 25 – Структурная схема для исследования колебательных звеньев при изменении постоянной времени ( ) и неизменном декременте затухания ( )

Рисунок 26 – Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени ( ) и неизменном декременте затухания ( )

Рисунок 27 – Переходные функции колебательных звеньев при изменении постоянной времени ( ) и неизменном декременте затухания ( )

    1. Исследование частотных характеристик колебательного звена при изменении постоянной времени ( ) и неизменном коэффициенте демпфирования ( )

Для исследования колебательного звена при изменении постоянной времени ( ) и неизменном декременте затухания ( ) в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 28. Логарифмические частотные характеристики колебательного звена представлены на рисунке 29, графики переходной функции – на рисунке 30.

Рисунок 28 – Структурная схема для исследования колебательных звеньев при изменении постоянной времени ( ) и неизменном декременте затухания ( )

Рисунок 29 – Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени ( ) и неизменном декременте затухания ( )

Рисунок 30 – Переходные функции колебательных звеньев при изменении постоянной времени ( ) и неизменном декременте затухания ( )

    1. Исследование частотных характеристик колебательного звена при неизмененной постоянной времени ( ) и изменении декремента затухания ( ).

Для исследования колебательного звена при неизмененной постоянной времени ( ) и изменении коэффициента демпфирования ( ) в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 31. Логарифмические частотные характеристики колебательного звена представлены на рисунке 32, графики переходной функции – на рисунке 33.

Рисунок 31 – Структурная схема для исследования колебательного звена при неизмененной постоянной времени ( ) и изменении декремента затухания ( )

Рисунок 32 – Логарифмические частотные характеристики колебательных звеньев при изменении постоянной времени ( ) и неизменном декременте затухания ( )

Рисунок 33 – Переходные функции колебательного звена при неизмененной постоянной времени ( ) и изменении декремента затухания ( )

    1. Реализация колебательного звена

Реализуем колебательное звено с постоянной времени и коэффициентом демпфирования на -контуре (рисунок 34). ЛАЧХ и ЛФЧХ данного звена и необходимого колебательного звена представлены на рисунке 35, а, а их переходные функции – на рисунке 35, б.

Рисунок 34 – Электрическая принципиальная схема колебательного -контура

а) б)

а) ЛАЧХ и ЛФЧХ;б) переходная функция

Рисунок 35 – Характеристики колебательного звена и -контура

При анализе графиков частотных характеристик и переходных процессов (рисунок 35) колебательных звеньев можно сделать следующие выводы:

  • увеличение (уменьшение) постоянной времени звена при неизменном декременте затухания приводит к сдвигу частотных характеристик влево (вправо).

  • при неизменном коэффициенте демпфирования увеличение постоянной времени звена приводит к сужению полосы пропускания; колебательность переходного процесса не меняется.

  • при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) колебательности переходного процесса и к более плавной ЛФЧХ.

  • при неизменной постоянной времени увеличение (уменьшение) коэффициента демпфирования приводит к уменьшению (увеличению) перерегулирования, сужению (расширению) полосы пропускания и уменьшению (увеличению) колебательности.

  1. Исследование дифференцирующих звеньев

    1. Исследование частотных характеристик идеального дифференцирующего звена

Для исследования частотных характеристик идеального дифференцирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 36. Логарифмические частотные характеристики идеального дифференцирующего звена представлены на рисунке 37, график переходной функции – на рисунке 38.

Рисунок 36 – Структурная схема для исследования идеального дифференцирующего звена

Рисунок 37 – Логарифмические частотные характеристики идеального дифференцирующего звена

Рисунок 38 – Переходная функция идеального дифференцирующего звена

    1. Реализация идеального дифференцирующего звена

Реализуем идеальное дифференцирующее звено схемой, изображенной на рисунке 39. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 40 и 41, переходная функция – на рисунке 42.

Рисунок 39 – Электрическая принципиальная схема дифференцирующего звена

Рисунок 40 – ЛАЧХ и ЛФЧХ дифференцирующего звена

Рисунок 41 – ЛАЧХ и ЛФЧХ дифференцирующего звена с инвертором

а)

б)

Рисунок 42 – Переходная функция схемы реализации идеального дифференцирующего звена

    1. Исследование частотных характеристик реального дифференцирующего звена

Для исследования частотных характеристик реального дифференцирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 43. Логарифмические частотные характеристики реального дифференцирующего звена представлены на рисунке 44, переходные функции – на рисунке 45.

Рисунок 43 – Структурная схема для исследования реального дифференцирующего звена

Рисунок 44 – Логарифмические частотные характеристики реального дифференцирующего звена

Рисунок 45 – Переходные функции реального дифференцирующего звена

    1. Реализация реального дифференцирующего звена

Реализуем реальное дифференцирующее звено с помощью схем, изображенных на рисунке 46. ЛАЧХ и ЛФЧХ дифференцирующего звена представлены на рисунках 47, переходные функции – на рисунке 48.

а)б)

а) -цепочка;б) -цепочка

Рисунок 46 – Электрические принципиальные схемы реального дифференцирующего звена

Рисунок 47 – ЛАЧХ и ЛФЧХ схем реализации дифференцирующего звена

Рисунок 48 – Переходная функция схемы реального дифференцирующего звена

  1. Исследование интегрирующих звеньев

    1. Исследование частотных характеристик идеального интегрирующего звена

Для исследования частотных характеристик идеального интегрирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 49. Логарифмические частотные характеристики идеального интегрирующего звена представлены на рисунке 50, график переходной функции – на рисунке 51.

Рисунок 49 – Структурная схема для исследования идеального интегрирующего звена

Рисунок 50 – Логарифмические частотные характеристики идеального интегрирующего звена

Рисунок 51 – Переходная функция идеального интегрирующего звена

    1. Реализация идеального интегрирующего звена

Реализуем идеальное интегрирующее звено схемой, изображенной на рисунке 52. ЛАЧХ и ЛФЧХ интегрирующего звена представлены на рисунках 53 и 54, переходная функция – на рисунке 55.

Рисунок 52 – Электрическая принципиальная схема интегрирующего звена

Рисунок 53 – ЛАЧХ и ЛФЧХ интегрирующего звена

Рисунок 54 – ЛАЧХ и ЛФЧХ интегрирующего звена с инвертором

Рисунок 55 – Переходная функция схемы реализации идеального интегрирующего звена

    1. Исследование частотных характеристик реального интегрирующего звена

Для исследования частотных характеристик реального интегрирующего звена в прикладном пакете Proteus\ISIS составляем структурную схему, представленную на рисунке 56. Логарифмические частотные характеристики реального интегрирующего звена представлены на рисунке 57, переходные функции – на рисунке 58.

Характеристики

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее