Теплопередача (Исаченко В. П. Осипова В. А. А. Сукомел С.) (555295), страница 4
Текст из файла (страница 4)
Прк наличии разного рода примесей ксаффициент тепла- ! Г пронодностн металлов резко С' '! убывает. Последнее можно — ' — — — , '' ~ ', г'~ объяснить увеличением струк- с, турных неоднородностей, котоэлектронов. Так,например, для чистой мсдп Д=Э96 Вт!(мХ Х К), для той же мели со аледамн мышьяка л= !49 Вт((м.К!. В отличие от чистых металлов коэффициенты сплавов при повышении температуры увеличиваются Твердые тела-диэлектрики (немета трнках с понышением температуры козффипмент обычно увеличиваетси (рис. 1-10).
Как правило, для ч ш ей объемной плотностью коэффициент теплопроводиости имеет более высокое значение. Оп зависит от струптуры материала его порнспюти н влажности. Многке строительные и теплоизоляционные материалы имеют пористое строение (кирпич, бетон, асбест, шлак и др.), и применение закова Фурье к таким шлам являетсв ,' З в известной мере условным. Наличие пор мл — '.
в материале не повволяет рассматривать ( такие тела, «ак сплошную среду. г у ' б Условным нвлпется также коэффи- циент теялопроводностн пористого мате- риала. Этв величина имеет смысз коэф,'з ( З .З фпциепта теплопроводпости некоторого .чге --~- -- , Ш З однородного тела, перев которое при одил 1 гз иаковой форме, размерах и температу- рах на границах прохоюш то же колнчс- з ' гь с ~ 1 ство тепла, что и через данное пористое - ни и ъгю ээг тедо (Л 808) Коэффициент теплопроводносги поРэс г-в ар) зюзюз х з рошкообразных и лорнстых тел сильно — зависит от их объемной плотности з ч гг ': г — чч 'зч,; (Л 1971. Например, при возрастании е з;,, гь; в — з е', плотности р от 400 до 800 кг/мз коэффи- шгеит теплопроволиостп асбеста увеличи'. м.
'э з Ы* 'и - вается ст 0,106 дп 0248 Вт/(м.К). Такое влияние плотности р иа ковффициент 1 з ' теплопровопности объясняется тем, что теплопроводноеть Л заполняююего поры — з воздуха значительно меньше, чем тверЛю фу дых компонентов пористого мате! риала.
Эффективный коэффициент теплоз †+ -)-. — , проводпасти пористых матеркалов силь- но зависит также от влажности. Для э. гб влажного материала коэффпциент теплопровопностп значительно бочьше, чем лля сухого н эолы в отдельности. Например, гдг з — длп сухого кирпича к=0,86, лля воды к=0,60, а длн влажного кирпича Х=. 1,0 Вт/(м К). Этот эффект может быть о по юг с объяснен коивектнзным переносом теплоты, возникаю1пая блэголвря «сспл лярному пвижению волы внутри пористо.
оэ .оэ. го материала н частично тем, что эбсорбг — г; г - „„„„ „, циопио связанная влага имеет другие характерпстики по сравнению со свобшо увеличение коэффициента теп- лопроводностн зернистых материалов с нзпсвеонем температуры маткг~о обьяснить тем, чю с повышеппеч тсмлературм возрастает теплопроэодность среды, запслнпюгцей проке. жутки между зервамн, а также узедичиэается теплопередзча излуче пнем зернистого масгква. !6 Коэффициенты теплопроводиости строительных н теплоизоляционных материалов имеют значения, лежащие примерно в пределах от 0,023 до 2,9 Вт/(И.К). Материалы с низким знзчепием иоэффнциента теплопровопиости (меньше 0,20 Вт/(м К]1 обычно применяемые для тепловой изоляции, называются теплоизоляпиониымн.
т а. диФФеРенциАльнОВ РРАенение теплОЛРОеОднОсти Изучение любого физического явления свалится к установлению зависимости между величвнамн, характеризующими эта явление. Для сложных физических процессов, в кщорых определяющие величины могут существенно изменяться в пространстве и времени, установить зависимость между этими величинами очень трудно. В этих случаях на помощь приходит метод математической физиии, который исходит из тога, что ограничивается промежуток времени н из всего пространства рассматривается лишь элементарный объем.
Это позволяет з пределах элементарного объема в выбранного малого отрезка времени пренебречь изменением некоторых величия, характеризующих процесс, и с)шественно упростить зависимость. Выбранные таким образом элементарный объем бо и элементарный промежуток времени г(т, в пределах которых рассматривается изучаемый процесс, с математической точки зрения являются величинами бесконечно малыми, а с физической тачки зрения †величина ешс достаточно большими, чтобы в их пределах можно было игнорировать дискретяое строение среды и рзасматривать ес «эк континуум (сплопь ную). Получелная таким образам зависимость является общим дифференциальным уравнением рассагатриваемого процесса.
Интегрнруя дифференциальные уравнения, можно получить аналнтичесиую зависимость между вели щнаии для всей области интегрирования н всего рассматриваемого промежутка времени. При решении задач. связанных а нахождением температурного пол», нгобхопимо иметь дифференциальное > равнение те п лопроводности, Для облегчения вывода этого лифферющиальнаго уравнения сделаем счедующи» допущения: тело однородно н изотропна; физические параметры постоянны; деформация рассматриваемого объема, связанная с изменением температуры, является очень малой величиной по сравнению с самим объемом; внутренние источники теплоты в теле, которые в общем случае иогут быть заланы кэк ч,=)(х, р, з, т), распределены равномерно.
В основу вывода днфференпнального урезке~ив теплапроводностн положен закон сохранения энергии, который в рассматриваемом случае может быть сформулирован следуюпгиь~ обрааом: количество теплоты Щ ввелеиное в елементарный объем извне за время бт вследствие теплопроводности, а также от внутренних источников, равно взменеиию внутренней энергии илв зптальпии вещества (э зависимости от рассмотрения нзохорнчесиого нли изобарнческого процесса), содержащегося з элементарном объеме: (1-22) г(()тл г%з И ) !7 Разница количеств теплоты, подведенного к элементарному пвраллелепиведу и отваленного от него за время дт в направлении аси Ох, представляет собой количество теплоты УО =дΠ— дО ьы ИО г=) Дрдздт — д чаардхут. (а) Функдня д +з, является непрерывной в рассматриваемом интервале Их и может быть разложена в рвд Тейлора: Если ограничиться двуми первымн членами ряда.
та уравнение (а) запишется в виде Щ„, = — — '„™ с(х ду Из дъ дх (б) Аналогичным образом можно найт» количество теплоты, подводимае к элементарному объему и в направлениях двух других координатных осей Оу и Ою Количество теплоты дО, подведенное теплапроводностью к рассматриваемому объему, будет равно: (,дх +др +дв У (в) 18 где дОг — количество теплоты, Дж, введенное в элементарный объем путем теплопроводностн за время дт; дОз — ноличество теплоты, которое за время Лт выделилась в элементарном объеме Да за счет внутренних источников; дΠ— изменение внутренней энергии нлн эчтавьпии вешсства, садержашегося в элементарном объеме Да, за время дт.
Для нахождения составляюших г . хеа уравнения (1-22) выделим н теле эле. ментарный параллелепипед со сторонами Дх, Ду, Дз (рис. 1-1!). Параллелепипед расположен так, чтобы его гь "%все гРани были паРаллельны соатветствУ- 81 ююнм координатным плоскостям. дд ев Количества теплоты, каторос под- вез еух водится к граням элементарнога объд ема за время с!т в направлении осей Ох, Оу, Оз, обозначим соответственно дО'., дОэ, УО.. Количество теплоты, «отаров бу- Рвг.
г-Ы. К внваву ввддере 'в"ж дет отводиться через противоппложпого Гравневвя тспзепрсволнастк ные грани в тех же направлениях. обозначим соответственно Щ +з . дОгггт, Ф,огнь. Количество теплоты, подведенное к грани ду Из в направлении аси Ох ва время Ит, составляет г(О„=ды((гол Дт, где проекции плотности теплового потока на напрввлеяле нормали к ука. ванной грани. Количестгю теплоты, отведенное через противоположную грань элементарного параллелепипеда в направлении оси Ох, запишется нак С учетом сказанного в общем виде уравнение (1-27) запишется следуюшим образом: —,+ —,+ — "+ —.—.О. дЧ дм д "С ч дз' (1-ЗО) Наконец, для стационарной теплопроводности н отсутствия ввутренних источников теплоты выражение (1-27) принимает вид уравнения 5!апласа: дп дес дм дх» дз да — + —,+ —,=О.
Нахождение частных решений этих уравнений в частных пронзволных и некоторых других является основным содержанием теории тепло. проводности. (1-31) с-т. хслОвня ОднОвндчнОсти для лэОцяссОВ твплОЛРОВОднОсти Так как лиффереицпальнае уравнение теплопроволвостн вывадено на основе обецил законов физики, тапио описывает явление тенлапроподноетн в самом общем виде. Поэтому можно сказать, что полученное лнфференциальпое уравнение описывает целый класс явлений теплопровопности. Чтобы мз бессислепного количества выделить конкретно рассматриваемий продесс и дать его полное математическое описание, к лнфференцнальнаму уравнепясо необходимо присоединить математическое описание всех частных особенностей рассматрипасмого пропесса.
21 дс (1-28) Коэффициент пропорциональности а, на/с, в уравнении (1-28) вазывается коэффициентом температур оцроводностн н является физическим параметром вещества. Он сушествен лля нестационарных тепловых пронессов и характеризует скорость иЗменения темпера. туры. Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводностн является мерой теплоннердионных свойств тела.
Из уравнения (1-28) следует, что изменение температуры во времени с)(едт для любой точки пространства пропорционально величине а. Иначе говоря, скорость намеиения температуры в леобой точке тела будет тем больше, чем больше коэффндиент теьспературопроводноств а. Поэтому при прочих равных условиях выравнивание температур во всех ~очках пространства будет происходить быстрее а том теле, которое обладает большиы коэффициентом температуропроводиости. Коэффициент температуропроводности зависит от природы вашества. Например, жидкости н газы обладают большой тепловой инерционностью и, следовательно, малым коэффициентом темперзтуропроаодности. Металлы обладают малой тепловой инерционностью, так как они имеют больпеой коэффициент температуропроводности.
Далее, если система тел не содер>Кит виутренвнх источников тепла (е)=О), тогда выражение (1-28) принимает форму урзвпее!Ня Фурье: де ( д 855 (1-29) Если имеются внутренние источники теплоты, но температурное поле соответствует стационарному состоянию, т. е. с=с(х, х, х), то дифференциалЬное уравнение теплонроводностн нревраецаетса в уравнение Пуассона: Эти частные особенности, которые совместно с дяфференциальным уравнением дают полное математичесиое описание конкретного процесса теплосроводности„называготся условиями однозначности н ли краевыми услозиямн. Условия однозначности включают в себя: геометрические условия, характеризующие форму и разыеры тела, в которых протекает процеес; физические условия, характеризующие физические свойства среды и тела; временные (начальные) условия, характерязущщие распределение температур в изучаеМом теле в начальный момент времени; граничные угловая, хараитсрвзующне взаимодействие рассматриваемого тела с окружающей Средой.