Главная » Просмотр файлов » Решение задач

Решение задач (555136), страница 3

Файл №555136 Решение задач (Теория вероятностей и математическая статистика. Теория и примеры решения задач) 3 страницаРешение задач (555136) страница 32015-11-20СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

H1 - оба канала защищены от воздействия помех;

H2 - первый выбранный канал защищен, второй вы­бранный канал не защищен от воздействия помех;

H3 - первый выбранный канал не защищен, второй выбранный канал защищен от воздействия помех;

H4 — оба выбранных канала не защищены от помех. Тогда

и

Задача. 1.5.1 По каналу связи передается 6 сообщений. Каждое из сообщений может быть искажено помехами с вероятностью 0.2 независимо от других. Найти вероят­ность того, что

  1. 4 сообщения из 6 не искажены;

  2. не менее 3 из 6 переданы искаженными;

  3. хотя бы одно сообщение из 6 искажено;

  4. не более 2 из 6 не искажены;

  5. все сообщения переданы без искажения.

Решение. Так как вероятность искажения 0.2, то вероят­ность передачи сообщения без помех — 0.8.

1. Используя формулу Бернулли (1.17), найдем вероят­
ность передачи 4 сообщений из 6 без помех:

2. не менее 3 из 6 переданы искаженными:

3. хотя бы одно сообщение из 6 искажено:

4. хотя бы одно сообщение из 6 искажено:

5. все сообщения переданы без искажения:

Задача. 1.5.2 Вероятность того, того, что летом день будет ясным, равна 0.42; вероятность пасмурного дня рав­на 0.36 и переменной облачности - 0.22. Сколько дней из 59 можно ожидать ясных и пасмурных?

Решение. Из условия задачи видно, что надо искать наи­более вероятное число ясных и пасмурных дней.

Для ясных дней p = 0.42, n = 59. Составляем неравен­ства (1.20):

59 • 0.42 + 0.42 — 1 < m0 < 59 • 0.42 + 0.42.

Отсюда

24.2 ≤ mo ≤ 25.2 → mo = 25.

Для пасмурных дней p = 0.36, n = 59 и

0.36 • 59 + 0.36 — 1 ≤ M0 ≤ 0.36 • 59 + 0.36;

Следовательно 20.16 ≤ M0 ≤ 21.60; → M0 = 21.

Таким образом, наиболее вероятное число ясных дней mo =25, пасмурных дней - M0 = 21. Тогда летом можно ожи­дать mo + M0 =46 ясных и пасмурных дней.

Задача. 1.5.3 На лекции по теории вероятностей при­сутствует 110 студентов курса. Найти вероятность того что

  1. k студентов (k = 0,1,2) из присутствующих родились первого сентября;

  2. хотя бы один студент курса родился первого сентя­бря.

Решение. Вероятность родиться 1 сентября любому сту­денту курса

p =1/365 очень мала, поэтому используем фор­мулу Пуассона (1.22). Найдем параметр Пуассона. Так как

n = 110, то λ = np = 110 • 1 /365 = 0.3.

Тогда по формуле Пуассона

Задача. 1.5.4 Вероятность того, что деталь не стан­дартная, равна 0.1. Сколько деталей нужно отобрать, чтобы с вероятностью P = 0.964228 можно было утвер­ждать, что относительная частота появления нестан­дартных деталей отклоняется от постоянной вероятно­сти p = 0.1 по абсолютной величине не более, чем на 0.01 ?

Решение.

Требуемое число n найдем по формуле (1.25). Имеем:

p = 1.1; q = 0.9; P = 0.96428. Подставим данные в формулу:

Откуда находим

По таблице значений функции Φ(x) находим, что

Задача. 1.5.5 Вероятность выхода из строя за время Т одного конденсатора равна 0.2. Определить вероятность того, что за время Т из 100 конденсаторов выйдут из строя

  1. ровно 10 конденсаторов;

  2. не менее 20 конденсаторов;

  3. менее 28 конденсаторов;

  4. от 14 до 26 конденсаторов.

Решение. Имеем п = 100, p = 0.2, q = 1 - p = 0.8.

1. Ровно 10 конденсаторов.

Так как п велико, воспользуемся локальной теоремой Муавра - Лапласа:

Вычислим

Так как функция φ(х) — четная, то φ(-2,5) = φ(2,50) = 0,0175 (находим по таблице значений функции φ(х). Искомая вероятность

2. Не менее 20 конденсаторов;

Требование, чтобы из 100 конденсаторов из строя вы­шли не менее 20, означает, что из строя выйдут либо 20, либо 21, ..., либо 100. Таким образом, т1 = 20, т2 =100. Тогда

По таблице значений функции Φ(x) найдем Φ(x1) = Φ(0) = 0, Φ(x2) = Φ(20) = 0.5. Искомая вероятность:

3. Менее 28 конденсаторов;

(здесь было учтено, что функция Лапласа Ф(x) - нечет­ная).

4. От 14 до 26 конденсаторов. По условию m1= 14, m2 = 26.
Вычислим x 1,x2:

Задача. 1.5.6 Вероятность появления некоторого собы­тия в одном опыте равна 0.6. Какова вероятность, что это событие появиться в большинстве из 60 опытов?

Решение. Количество m появлений события в серии ис­пытаний находится в промежутке [0; 60]. «В большинстве опытов» означает, что m принадлежит промежутку [30, 60.] По условию n = 60, p = 0.6, q = 0.4, m1 = 30, m2 = 60. Вычислим x1 и x2:



Случайные величины и их распределения

Задача. 2.1.1 Дана таблица, где в верхней строке указа­ны возможные значения случайной величины X, а в нижней — их вероятности.

Может ли эта таблица быть рядом распределения X?

Ответ: Да, так как p1 + p2 + p3 + p4 + p5 = 1

Задача. 2.1.2 Выпущено 500 лотерейных билетов, причем 40 билетов принесут их владельцам выигрыш по 10000 руб., 20 билетов — по 50000 руб., 10 билетов — по 100000 руб., 5 билетов — по 200000 руб., 1 билет — 500000 руб., осталь­ные — без выигрыша. Найти закон распределения выигры­ша для владельца одного билета.

Решение.

Возможные значения X: x5 = 10000, x4 = 50000, x3 = 100000, x2 = 200000, x1 = 500000, x6 = 0. Вероятности этих возможных значений:

Искомый закон распределения:

Задача. 2.1.3 Стрелок, имея 5 патронов, стреляет до первого попадания в цель. Вероятность попадания при каждом выстреле равна 0.7. Построить закон распределе­ния числа использованных патронов, найти функцию рас­пределения F(x) и построить ее график, найти P(2 < x < 5).

Решение.

Пространство элементарных событий опыта

= {1, 01, 001, 0001, 00001, 11111},

где событие {1} - попал в цель, событие {0} - не попал в цель. Элементарным исходам соответствуют следующие значения случайной величины числа использованных па­тронов: 1, 2, 3, 4, 5. Так как результат каждого следующего выстрела не зависит от предыдущего, то вероятности воз­можных значений:

p1 = P(x1 = 1) = P(1) = 0.7; p2 = P(x2 = 2) = P(01) = 0.3 · 0.7 = 0.21;

p3 = P(x3 = 3) = P(001) = 0.32 · 0.7 = 0.063;

p4 = P(x4 = 4) = P(0001) = 0.33 · 0.7 = 0.0189;

p5 = P(x5 = 5) = P(00001 + 00000) = 0.34 · 0.7 + 0.35 = 0.0081.

Искомый закон распределения:

Найдем функцию распределения F(x), пользуясь формулой (2.5)

x ≤1, F(x) = P(X < x) = 0

  1. < x ≤2, F(x) = P(X < x) = P1(X1 = 1) = 0.7

  2. < x ≤ 3, F(x) = P1(X = 1) + P2(x = 2) = 0.91

  3. < x ≤ 4, F(x) = P1 (x = 1) + P2(x = 2) + P3(x = 3) =

= 0.7 + 0.21 + 0.063 = 0.973

4 < x ≤ 5, F(x) = P1(x = 1) + P2(x = 2) + P3(x = 3) +

+P4(x = 4) = 0.973 + 0.0189 = 0.9919

x > 5, F(x) = 1

Найдем P(2 < x < 5). Применим формулу (2.4): P(2 < x < 5) = F(5) — F(2) = 0.9919 — 0.91 = 0.0819

Задача. 2.1.4 Дана F(x) некоторой случайной величины:

Записать ряд распределения дляX.

Решение.

Из свойств F(x) следует, что возможные значения слу­чайной величины X - точки разрыва функции F(x), а со­ответствующие им вероятности - скачки функции F(x). Находим возможные значения случайной величины X={0,1,2,3,4}.

Задача. 2.1.5 Установить, какая из функций

является функцией распределения некоторой случайной величины.

В случае утвердительного ответа, найти вероят­ность того, что соответствующая случайная величина принимает значения на [-3,2].

Решение. Построим графики функций F1(x) и F2(x):

Функция F2(x) не является функцией распределения, так как не является неубывающей. Функция F1(x) является

функцией распределения некоторой случайной величины, так как является неубывающей и удовлетворяет условию (2.3). Найдем вероятность попадания на промежуток:

Задача. 2.1.6 Дана плотность вероятности непрерывной случайной величины X:

Найти:

  1. коэффициент C;

  2. функцию распределения F(x);

  3. вероятность попадания случайной величины в интер­вал (1, 3).

Решение. Из условия нормировки (2.9)находим

Следовательно,

По формуле (2.10) находим:

Таким образом,

По формуле (2.4) находим

Задача. 2.1.7 Случайное время простоя радиоэлектрон­ной аппаратуры в ряде случаев имеет плотность вероят­ности

где M = lge = 0.4343...

Найти функцию распределения F(x).

Решение. По формуле (2.10) находим

где

Задача. 2.2.1 Дан ряд распределения дискретной случай­ной величины X:

Найти математическое ожидание, дисперсию, сред­нее квадратичное отклонение, M[2X + 3], D[-3X + 2].

Решение.

По формуле (2.12) находим математическое ожидание:

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 10 · 0.2 + 20 · 0.15 + 30 · 0.25 + 40 · 0.4 = 28.5

M[2X + 5] = 2M[X] + M[5] = 2M[X] + 5 = 2 · 28.5 + 5 = 62. По формуле (2.19) найдем дисперсию:

Задача. 2.2.2 Найти математическое ожидание, диспер­сию и среднее квадратичное отклонение непрерывной слу­чайной величины X, функция распределения которой

.

Решение. Найдем плотность вероятности:

Математическое ожидание найдем по формуле (2.13):

Дисперсию найдем по формуле (2.19):

Найдем сначала математическое ожидание квадрата случайной величины:

Тогда

Среднее квадратичное отклонение

Задача. 2.2.3 Дискретная случайная величина X имеет ряд распределения:

Найти математическое ожидание и дисперсию случайной величины Y = eX.

Решение. M[Y] = M[eX] = e-- 1 · 0.2 + e0 · 0.3 + e1 · 0.4 + e2 · 0.1 =

= 0.2 · 0.3679 + 1 · 0.3 + 2.71828 · 0.4 + 7.389 · 0.1 = 2.2.

D[Y] = D[ex] = M[(eX )2 M2 [eX] =

[(e-1 )2 • 0.2 + (e0)2 • 0.3 + (e1 )2 • 0.4 + (e2)2 • 0.1] — (2.2)2 =

= (e--2 • 0.2 + 0.3 + e2 • 0.4 + e4 • 0.1) — 4.84 = 8.741 — 4.84 = 3.9.

Задача. 2.2.4 Дискретная случайная величина X может принимать только два значения x1 и x2, причем x1 < x2. Известны вероятность p1 = 0.2 возможного значения x1, математическое ожидание M[X] = 3.8 и дисперсия D[X] = 0.16. Найти закон распределения случайной величины.

Решение. Так как случайная величина X принимает толь­ко два значения x1 и x2, то вероятность p2 = P(X = x2) = 1 - p1 = 1 - 0.2 = 0.8.

По условию задачи имеем:

M[X] = x1p1 + x2p2 = 0.2x1 + 0.8x2 = 3.8;

D[X] = (x21p1 + x22p2) - M2[X] = (0.2x21 + 0.8x22) - (0.38)2 = 0.16.

Таким образом получили систему уравнений:

Условию x12 удовлетворяет решение x1 = 3. x = 4. По­этому искомый закон распределения имеет вид:

Задача. 2.2.5 Случайная величина X подчинена закону распределения, график плотности которого имеет вид:

Найти математическое ожидание, дисперсию и сред­нее квадратичное отклонение.

Решение. Найдем дифференциальную функцию распре­деления f(x). Вне интервала (0, 3) f(x) = 0. На интервале (0, 3) график плотности есть прямая с угловым коэффици­ентом k = 2/9, проходящая через начало координат. Таким образом,

Математическое ожидание:

Найдем дисперсию и среднее квадратичное отклоне­ние:

Задача. 2.2.6 Найти математическое ожидание и дис­персию суммы очков, выпадающих на четырех игральных кубиках при одном бросании.

Решение. Обозначим A — число очков на одном кубике при одном бросании, B – число очков на втором кубике, C — на третьем кубике, D — на четвертом кубике. Для случайных ве­личин A, B, C, D за­кон распределения один.

Тогда M[A] = M[B] = M[C] = M[D] = (1+2+3+4+5+6) / 6 = 3.5


Задача. 2.3.1 Вероятность того, что частица, вылетев­шая из радиоактивного источника, будет зарегистриро­вана счетчиком, равна 0.0001. За время наблюдения из ис­точника вылетело 30000 частиц. Найти вероятность то­го, что счетчик зарегистрировал:

  1. ровно 3 частицы;

  2. ни одной частицы;

  3. не менее 10 частиц.

Решение. По условию п = 30000, p = 0.0001. События, со­стоящие в том, что частицы, вылетевшие из радиоактив­ного источника, зарегистрированы, независимы; число п велико, а вероятность p мала, поэтому воспользуемся рас­пределением Пуассона: Найдем λ : λ = пp = 30000 • 0.0001 = 3 = М[Х]. Искомые вероятности:

Задача. 2.3.2 В партии 5% нестандартных деталей. На­удачу отобраны 5 деталей. Написать закон распределе­ния дискретной случайной величины X — числа нестан­дартных деталей среди пяти отобранных; найти мате­матическое ожидание и дисперсию.

Решение. Дискретная случайная величина X — число нестандартных деталей — имеет биномиальное распреде­ление и может принимать следующие значения: x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4, x6 = 5. Вероятность нестандарт­ной детали в партии p = 5/100 = 0.05. Найдем вероятности этих возможных значений:

Напишем искомый закон распределения:

Найдем числовые характеристики:

0 • 0.7737809 + 1 • 0.2036267 + 2 • 0.0214343+

+ 3 • 0.0011281 + 4 • 0.0000297 + 5 • 0.0000003 = 0.2499999 ≈ 0.250

или

M[X] = n • p = 5 • 0.05 = 0.25.

D[X] = M[X2 ] M2 [X] = 02 • 0.7737809 + 12 • 0.2036267+

+ 22 • 0.0214343 + 32 • 0.0011281 + 42 • 0.0000297 + 52 • 0.0000003- 0.0625 =

= 0.2999995 - 0.0625 = 0.2374995 ≈ 0.2375

или D[X] = n • p • (1 - p) = 5 • 0.05 • 0.95 = 0.2375.

Задача. 2.3.3 Время обнаружения цели радиолокатором распределено по показательному закону

где 1/λ = 10 сек. - среднее время обнаружения цели. Найти вероятность того, что цель будет обнаружена за время от 5 до 15 сек. после начала поиска.

Решение. Вероятность попадания случайной величины X в интервал (5, 15) найдем по формуле (2.8):

При получаем

= 0.6065(1 - 0.3679) = 0.6065 • 0.6321 = 0.3834

Задача. 2.3.4 Случайные ошибки измерения подчинены нормальному закону с параметрами a = 0, σ = 20 мм. За­писать дифференциальную функцию распределения f(x) и найти вероятность того, что при измерении допущена ошибка в интервале от 5 до 10 мм.

Решение. Подставим значения параметров a и σ в диффе­ренциальную функцию распределения (2.35):

По формуле (2.42) найдем вероятность попадания слу­чайной величины X в интервале [0, 5) :

Здесь значения функции Лапласа взяты по таблице.

Задача. 2.3.5 Цена деления шкалы амперметра равна 0.1 ампера. Показания амперметра округляются до ближай­шего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0.03 ампе­ра. Найти математическое ожидание, дисперсию ошибки округления отсчета и функцию F(x).

Решение. Ошибку округления отсчета можно считать рас­пределенной равномерно на [0; 0.1], т.е. a = 0, b = 0.1. То­гда дифференциальная функция распределения f(x) будет иметь вид



Характеристики

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6294
Авторов
на СтудИзбе
314
Средний доход
с одного платного файла
Обучение Подробнее