tm16_18 (552030)
Текст из файла
18
http//:www.svkspb.nm.ruДинамика
Динамика – раздел механики, в котором изучаются законы движения материальных тел под действием сил. Осн.законы механики (зак-ны Галилея-Нютона): закон инерции (1-ый закон): материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не изменит это состояние; основной закон динамики ( 2-ой закон (Ньютона)): ускорение матер.точки пропорционально приложенной к ней силе и имеет одинаковое с ней направление ; закон равенства действия и противодействия (3-й закон (Ньютона)): всякому действию соответствует равное и противоположно направленное противодействие; закон независимости сил: несколько одновременно действующих на матер.точку сил сообщают точке такое ускорение, какое сообщила бы ей одна сила, равная их геометрической сумме. В классической механике масса движущегося тела принимается равной массе покоящегося тела, – мера инертности тела и его гравитационных свойств. Масса = весу тела, деленному на ускорение свободного падения.
m=G/g, g9,81м/с2. g зависит от географической широты места и высоты над уровнем моря – не постоянная величина. Сила – 1Н (Ньютон) = 1кгм/с2. Система отсчета, в которой проявляются 1-ый и 2-ой законы, назыв. инерциальной системой отсчета. Дифференциальные уравнения движения материальной точки: , в проекции на декартовы оси коорд.:
, на оси естественного трехгранника: ma=Fi; man=Fin; mab=Fib (ab=0 – проекция ускорения на бинормаль), т.е.
( – радиус кривизны траектории в текущей точке). Вслучае плоского движения точки в полярных координатах:
. Две основные задачи динамики: первая задача динамики – зная закон движения точки, определить действующую на нее силу; вторая задача динамики (основная) – зная действующие на точку силы, определить закон движения точки.
– дифференциальное ур-ие прямолинейного движения точки. Дважды интегрируя его, находим общее решение x=f(t,C1,C2).
Постоянные интегрирования C1,C2 ищут из начальных условий: t=0, x=x0, =Vx=V0, x=f(t,x0,V0) – частное решение – закон движения точки.
Колебательное движение материальной точки. Восстанавливающая сила (сила упругости) Fx= – cx, сила стремится вернуть точку в равновесное положение, "с" – коэффициент жесткости пружины = силе упругости при деформации, равной единице [Н/м]. Свободные колебания ; обозначив c/m=k2, получаем
– линейное однородное диффер-ное уравнение второго порядка, характеристическое уравнение: z2 + k2= 0, его корни мнимые, общее решение дифф-ного уравнения будет x= C1coskt + C2sinkt, C1,C2 – постоянные интегрирования. Для их определения находим уравнение скоростей:
= – kC1sinkt + kC2coskt, подставляем начальные условия в уравнения для х и
, откуда С1= х0, С2=
/k, т.е. x= х0coskt + (
/k)sinkt.
М ожно обозначить С1=Аsin, C2=Acos x=Asin(kt+) – уравнение гармонических колебаний. А=
–амплитуда, tg=kx0/
, – начальная фаза свободных колебаний;
– циклическая частота (угловая, собственная) колебаний; период: Т=2/k=2
, k и Т не зависят от начальных условий – изохронность колебаний; амплитуда и начальная фаза зависят о начальных условий. Под действием постоянной силы Р происходит смещение центра колебаний в сторону действия силы Р на величину статического отклонения ст=Р/с. Если Р – сила тяжести, то Т=2
.
Затухающие колебания при действии Rx= – b сила сопротивления, пропорциональная скорости (вязкое трение).
, обозначив b/m=2n, получаем:
, характеристическое уравнение: z2 + 2nz + k2= 0, его корни:
z
1,2=
. а) При n
, обозначив С1=Аsin, C2=Acos x=Ae-ntsin(kt+). Множитель e-nt показывает, что колебания затухающие. График заключен между двумя симметричными относительно оси t кривыми x=Ae-nt. Из начальных условий:
,
; частота затухающих колебаний: k*=
; период:
, период затухающих колебаний больше периода свободных колебаний (при небольших сопротивлениях Т*Т). Амплитуды колебаний уменьшаются:
– декремент колебаний; –nT*/2 логарифмический декремент; "n" – коэффициент затухания.
Б) Апериодическое движение точки при n k или b 2 . При n > k корни характеристич-ого ур-я вещественны, общее решение:
, обозначая С1=(В1+В2)/2, С2=(В1-В2)/2,
(ch, sh – гиперболические косинус и синус), если ввести В1= Аsh, В2= Аch, то
– это уравнение не колебательного движения (апериодического), т.к. гиперболический синус не является периодической функцией. При n = k корни характеристич. ур-я вещественны, равны и отрицательны: z1=z2= – n, общее решение:
, или
, движение также апериодическое.
Вынужденные колебания кроме восстанавливающей силы действует переменная возмущающая сила, обычно, по гармоническому закону: Q = Hsin(pt+), р – частота возмущающей силы, – начальная фаза. , h=Н/m,
– дифференциальное уравнение вынужденных колебаний (неоднородное линейное дифф-ное ур-ие). Его общее решение = сумме общего решения однородного уравнения
и частного решения данного уравнения:
х = х*+х**. х*= C1coskt + C2sinkt, х**= Asin(рt+) – частное решение ищется в виде подобном правой части уравнения. Подставляя решение в уравнение, находим
, х = C1coskt + C2sinkt+
sin(рt+). Величина статического отклонения: Аст= Н/с,
– коэфф-нт динамичности, во скослько раз амплитуда колебаний превосходит статическое отклонение. При p=k = – явление резонанса (частота возмущающей силы равна частоте собственных колебаний, при этом амплитуда неограниченно возрастает). При p/k1 наступает явление, называемое биениями:
. Обозначая
, получаем x=A(t)cos(pt+) – происходит наложение дополнительных колебаний, вызванных возмущающей силой, на собственно вынужденные колебания – колебания частоты р, амплитуда которых является периодической функцией.
Я вление резонанса возникает при совпадаении частот вынужденных и свободных кол-ний точки p=k. Диф-ное ур-ние:
. Частное решение:
х**= Вtcos(kt+), B=–h/(2k), т.е. общее решение диф-ного ур-ния: х = C1coskt + C2sinkt – –h/(2k)tcos(kt+). Ур-ние показывает, что амплитуда вынужденных колебаний при резонансе возрастает пропорционально времени. Период
Т=2/k, фаза вынужденных колебаний отстает от фазы возмущающей силы на /2.
Вынужденные колебания при наличии вязкого трения: +Hsin(pt+),
, общее решение в зависимости от величины k и n:
1) при n ;
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.