1004147_1 (540917)
Текст из файла
12.11. Найтирешениепервойсмешаннойзадачидляуравнениятеплопроводности на отрезке.U t = 9U xx , 0 < x < 10, t > 0 x 2 5, 0 ≤ x ≤ 5,U ( x, 0 ) = 10 − x, 4 < x ≤ 10,U ( 0, t ) = U (10, t ) = 0РешениеОбщее решение данного уравнения имеет вид:∞ π na − t l 2U ( x, t ) = ∑ An esinn =1π nxl,2π nxгде An = ∫ U ( x, 0 ) sindx, n = 1, 2, ... .l 0llВ нашем случае a = 3, l = 10 .Находим:5102 1 2π nxπ nx An = ∫ x sindx + ∫ (10 − x ) sindx .10 5 010105Вычислим отдельно:5∫x0π nxdu = 2 xdx10π nx =cos1010πn5u = x,du = dx510 x 220π nxπ nxcosx cosdx ==−+π nxπ nx =10πn10 0 π n ∫010dv = cosdx, v =sin1010πn2sin10dx =u = x2 ,dv = sinπ nxdx, v = −510 x 2200 x200 xπ nxπ nxπ nx=−cos+ 2 2 sin− 2 2 ∫ sindx =10 0 π n10 0 π n 010πn555 10 x 2π nx 200 x π nx 2000π nx = −cos+ 2 2 sin+ 3 3 cos =πππn10n10n100=−250π n 1000 π n 2000 π n cos+sin+− 1 . cos2 π 2n22 π 3 n3 2πn110∫ (10 − x ) sin5π nx10u = 10 − x,dx =dv = sinπ nx10du = −dxdx, v = −π nx =10cosπn81010 (10 − x )10π nxπ nx=−cos−cosdx =∫10 5 π n 510πn10 10 (10 − x )π nx 100π nx 50π n 100πn= −cos− 2 2 sincos+ 2 2 sin . =πn10 π n10 5 π n2 π n210Тогда1 1 250π n 1000 π n 2000 π n An = −cossin++− 1 + cos5 5 πn2 π 2n22 π 3n3 2π n 100π n 60π n 100 π n 50+cos+ 2 2 sin+− 1 . = 2 2 sin cosπn2 π n2 π n2 π 3 n3 2Общее решение исходного уравнения: 3π n t 3πn4 π n − 10U ( x, t ) = 2 ∑ 2 sin+ 3 cos− 1 eπ n=1 n2 πn 220∞22sinπ nx10.13.11.
Найтирешениепервойсмешаннойзадачидляуравнениятеплопроводности в круге.U t = 10∆U , 0 ≤ r < 2, t > 0, U ( r , 0 ) = 4 − r 2 , U ( 2, t ) = 0 .РешениеОбщее решение данного уравнения:∞ a2µ 2 µ r U ( r , t ) = ∑ An exp − 2 n t J 0 n ,n =1 R R где An =R22R J21rU ( r ) J(µ ) ∫0n00 µn r dr , Jν ( x ) – функция Бесселя первого рода порядка R ν , µ1 , µ 2 , ..., µ n , ...
– положительные корни уравнения J 0 ( µ ) = 0 .В нашем случае a = 10, R = 2 . Находим2r (4 − r ) J(µ ) ∫2An =22 J21Сделаем замену2n00 µn r dr . 2 r= x ⇒ r = 2 x, dr = 2dx , тогда21112 ⋅ 228 23An = 2x1−xJµxdx=xJµxdx−xJµxdx()()()().0n0n0n∫0J1 ( µ n ) ∫0J12 ( µ n ) ∫0Вычислим отдельно интегралы1100S1 = ∫ xJ 0 ( µ n x ) dx и S2 = ∫ x3 J 0 ( µn x ) dx .С этой целью воспользуемся рекуррентными формуламиd νx Jν ( x ) ) = xν J v −1 ( x ) и xJν +1 = − xJν −1 ( x ) + 2ν Jν ( x ) .(dxИз первой из них при ν = 1 и ν = 2 соответственно получаем:xx∫ ξ J (ξ ) dξ = xJ ( x ) , ∫ ξ J (ξ ) dξ = x J ( x ) .20012010Вычислим по частям интеграл:3u = ξ 2,x∫ ξ J 0 (ξ ) dξ =3du = 2ξ d ξdv = ξ J 0 (ξ ) dξ , v = J (ξ ) d ξ0=x= ξ J1 ( ξ ) − 2 ∫ ξ 2 J1 ( ξ ) d ξ = x 3 J 1 ( x ) − 2 x 2 J 2 ( x ) .x300Согласно второй из приведенных формул при ν = 1 справедливо равенствоxJ 2 ( x ) = − xJ 0 ( x ) + 2 J1 ( x ) .Тогдаx∫ ξ J (ξ ) dξ = x J ( x ) − 2 x ( − xJ ( x ) + 2 J ( x ) ) = 2 x J ( x ) + x ( x332010102− 4 ) J1 ( x ) .0Вернемся к вычислению интегралов S1 и S2 .
Сделаем замену µn x = ξ , тогдаµnµµnµnξ dξ 1 n1S1 = ∫ J 0 (ξ )= 2 ∫ ξ J 0 (ξ ) dξ =J (µ ) .µ n µ n µn 0µn 1 n0ξ 3 dξ 1S2 = ∫ J 0 (ξ ) 3=µn µ n µ n40=1µ n4∫ J (ξ ) ξ dξ =300( 2µ J ( µ ) + µ ( µ2n0nn2n)− 4 ) J1 ( µ n ) =J1 ( µ n )µn−4 J1 ( µ n )µn3.ПолучаемAn ==8( S1 − S2 ) =84 J1 ( µ n )J12 ( µ n )J21( µn )µ3n= 1 J1 ( µ n ) 4 J1 ( µ n ) J−−µ() =1nµn3 J12 ( µn ) µ n µn832.µ J ( µn )3n 1Общее решение исходного уравнения: 5µn2t µn r U ( r , t ) = 32∑ 3J0 . exp −2 2 n =1 µ n J1 ( µ n )∞14Найти12.12.решениепервойсмешаннойзадачидляуравнениятеплопроводности на отрезке.U t = 25U xx , 0 < x < 9, t > 02 x 2 9, 0 ≤ x ≤ 9 2,U ( x, 0 ) = 9 − x, 9 2 < x ≤ 5,U ( 0, t ) = U ( 9, t ) = 0РешениеОбщее решение данного уравнения имеет вид: π na − t l 2∞U ( x, t ) = ∑ An esinπ nxn =1l,2π nxгде An = ∫ U ( x, 0 ) sindx, n = 1, 2, ... .l 0llВ нашем случае a = 5, l = 9 .Находим:2 2An = 9 992∫0x sindx + ∫ ( 9 − x ) sindx .99922π nxπ nx9Вычислим отдельно:du = 2 xdx∫0 x sin 9 dx = dv = sin π nx dx, v = − 9 cos π nx =πn9999u = x,du = dx9 x2π nx 2 18 2π nx=−cos+x cosdx =9π nxπ nx =9 0 π n ∫09πndv = cosdx, v =sin99πn922π nxu = x2 ,9 9 x2π nx 162 x π nx 1458π nx 2cos= −+ 2 2 sin+ 3 3 cos =n9n9n9πππ0=−729π n 1458 π n π n 729cos+ 2 2 sin+− 1 . cos4π n2 π n2 π 3n3 25du = − dx∫ ( 9 − x ) sin 9 dx = dv = sin π nx dx, v = − 9 cos π nx =9299πn9π nxu = 9 − x, 9(9 − x )π nx 81π nx 81π n 81πn= −− 2 2 sin+ 2 2 sin .coscos =πn9π n9 92π n2 π n292Тогда2 2 729π n 729π n 1458 π n An = −cos+ 2 2 sin+− 1 + cos9 9 4π n2 π n2 π 3n3 2π n 81π n 54π n 72 π n 81+cos+ 2 2 sin+− 1 . = 2 2 sin cos2π n2 π n2 π n2 π 3n 3 2Общее решение исходного уравнения: 5π n t9 3πn4 π n −U ( x, t ) = 2 ∑ 2 sin+ 3 cos− 1 eπ n=1 n2 πn 218∞62sinπ nx9.13.12.
Найтирешениепервойсмешаннойзадачидляуравнениятеплопроводности в круге.U t = 25∆U , 0 ≤ r < 4, t > 0, U ( r , 0 ) = 16 − r 2 , U ( 4, t ) = 0 .РешениеОбщее решение данного уравнения:∞ a2µ 2 µ r U ( r , t ) = ∑ An exp − 2 n t J 0 n ,n =1 R R где An =R22R J21rU ( r ) J(µ ) ∫0n00 µn r dr , Jν ( x ) – функция Бесселя первого рода порядка R ν , µ1 , µ 2 , ..., µ n , ...
– положительные корни уравнения J 0 ( µ ) = 0 .В нашем случае a = 5, R = 4 . Находим4r (16 − r ) J(µ ) ∫2An =24 J21Сделаем замену2n00 µn r dr . 4 r= x ⇒ r = 4 x, dr = 4dx , тогда41112 ⋅ 4232 23An = 2x1−xJµxdx=xJµxdx−xJµxdx()()()()0n0n∫0 0 n .J1 ( µ n ) ∫0J12 ( µ n ) ∫0Вычислим отдельно интегралы1100S1 = ∫ xJ 0 ( µ n x ) dx и S2 = ∫ x3 J 0 ( µn x ) dx .С этой целью воспользуемся рекуррентными формуламиd νx Jν ( x ) ) = xν J v −1 ( x ) и xJν +1 = − xJν −1 ( x ) + 2ν Jν ( x ) .(dxИз первой из них при ν = 1 и ν = 2 соответственно получаем:xx∫ ξ J (ξ ) dξ = xJ ( x ) , ∫ ξ J (ξ ) dξ = x J ( x ) .20012010Вычислим по частям интеграл:7x∫ ξ J 0 (ξ ) dξ =30u = ξ 2,du = 2ξ d ξdv = ξ J 0 (ξ ) dξ , v = J (ξ ) d ξ=x= ξ J1 ( ξ ) − 2 ∫ ξ 2 J1 ( ξ ) d ξ = x 3 J 1 ( x ) − 2 x 2 J 2 ( x ) .x300Согласно второй из приведенных формул при ν = 1 справедливо равенствоxJ 2 ( x ) = − xJ 0 ( x ) + 2 J1 ( x ) .Тогдаx∫ ξ J (ξ ) dξ = x J ( x ) − 2 x ( − xJ ( x ) + 2 J ( x ) ) = 2 x J ( x ) + x ( x332010102− 4 ) J1 ( x ) .0Вернемся к вычислению интегралов S1 и S2 .
Сделаем замену µn x = ξ , тогдаµnµµnµnξ dξ 1 n1S1 = ∫ J 0 (ξ )= 2 ∫ ξ J 0 (ξ ) dξ =J (µ ) .µ n µ n µn 0µn 1 n0ξ 3 dξ 1S2 = ∫ J 0 (ξ ) 3=µn µ n µ n40=1µ n4∫ J (ξ ) ξ dξ =300( 2µ J ( µ ) + µ ( µ2n0nn2n)− 4 ) J1 ( µ n ) =J1 ( µ n )µn−4 J1 ( µ n )µn3.ПолучаемAn ==32( S1 − S2 ) =324 J1 ( µ n )J12 ( µ n )J21( µn )µ3n= 1 J1 ( µ n ) 4 J1 ( µ n ) µJ−−() =1nµn3 J12 ( µn ) µ n µn32128.µ J ( µn )3n 1Общее решение исходного уравнения: 25µ n2 µn r U ( r , t ) = 128∑ 3J0 t . exp −16 4 n =1 µ n J1 ( µ n )∞1812.17. Найтирешениепервойсмешаннойзадачитеплопроводности на отрезке.U t = 9U xx , 0 < x < 4, t > 0 x 2 2, 0 ≤ x ≤ 2,U ( x, 0 ) = 4 − x, 2 < x ≤ 4,U ( 0, t ) = U ( 4, t ) = 0РешениеОбщее решение данного уравнения имеет вид: π na − t l 2∞U ( x, t ) = ∑ An esinn =1π nxl,2π nxгде An = ∫ U ( x, 0 ) sindx, n = 1, 2, ...
.l 0llВ нашем случае a = 3, l = 4 .Находим:242 1 2π nxπ nx An = ∫ x sindx + ∫ ( 4 − x ) sindx .4 2 0442Вычислим отдельно:du = 2 xdx∫0 x sin 4 dx = dv = sin π nx dx, v = − 4 cos π nx =πn4422u = x2 ,π nx2π nxπ nx4 x28=−cos+x cosdx =∫πn4 0 πn 042u = x,du = dx=π nxπ nx =4dv = cosdx, v =sinπn442 4 x2π nx 32 xπ nx 128π nx = −cos+ 2 2 sin+ 3 3 cos =πππn4n4n40=−π n 64π n 128 π n 16cos+ 2 2 sin+− 1 . cosπn2 π n2 π 3n3 29дляуравненияdu = − dx∫2 ( 4 − x ) sin 4 dx = dv = sin π nx dx, v = − 4 cos π nx =44πn4π nxu = 4 − x, 4(4 − x)π nx 16π nx = −cos− 2 2 sin =n4n4ππ28π n 16πn=cos+ 2 2 sin .πn2 π n24Тогда1 1 16π n 64π n 128 π n An = − cos+ 2 2 sin+− 1 + cos2 2 πn2 π n2 π 3n3 2π n 16π n 24π n 32 π n 8+ cos+ 2 2 sin+− 1 . = 2 2 sin cosπn2 π n2 π n2 π 3 n3 2Общее решение исходного уравнения: 3π n t4 3πn4 π n −U ( x, t ) = 2 ∑ 2 sin+ 3 cos− 1 eπ n=1 n2 πn 28∞102sinπ nx4.13.17.
Найтирешениепервойсмешаннойзадачидляуравнениятеплопроводности в круге.U t = ∆U , 0 ≤ r < 1, t > 0, U ( r , 0 ) = 1 − r 2 , U (1, t ) = 0 .РешениеОбщее решение данного уравнения:∞ a2µ 2 µ r U ( r , t ) = ∑ An exp − 2 n t J 0 n ,n =1 R R где An =R22R J21rU ( r ) J(µ ) ∫0n00 µn r dr , Jν ( x ) – функция Бесселя первого рода порядка R ν , µ1 , µ 2 , ..., µ n , ... – положительные корни уравнения J 0 ( µ ) = 0 .В нашем случае a = 1, R = 1 . Находим1r (1 − r ) J(µ ) ∫2An =21J212n00 µn r dr . 1 Сделаем замену r = x ⇒ r = x, dr = dx , тогда113An = 2x1−xJµxdx=xJµxdx−xJµxdx()()()()nn00∫0 0 n .J1 ( µ n ) ∫0J12 ( µ n ) ∫02122Вычислим отдельно интегралы1100S1 = ∫ xJ 0 ( µ n x ) dx и S2 = ∫ x3 J 0 ( µn x ) dx .С этой целью воспользуемся рекуррентными формуламиd νx Jν ( x ) ) = xν J v −1 ( x ) и xJν +1 = − xJν −1 ( x ) + 2ν Jν ( x ) .(dxИз первой из них при ν = 1 и ν = 2 соответственно получаем:xx∫ ξ J (ξ ) dξ = xJ ( x ) , ∫ ξ J (ξ ) dξ = x J ( x ) .20120010Вычислим по частям интеграл:x∫ ξ J 0 (ξ ) dξ =30u = ξ 2,du = 2ξ d ξdv = ξ J 0 (ξ ) dξ , v = J (ξ ) d ξx== ξ J1 ( ξ ) − 2 ∫ ξ 2 J1 ( ξ ) d ξ = x 3 J 1 ( x ) − 2 x 2 J 2 ( x ) .3x0011Согласно второй из приведенных формул при ν = 1 справедливо равенствоxJ 2 ( x ) = − xJ 0 ( x ) + 2 J1 ( x ) .Тогдаx∫ ξ J (ξ ) dξ = x J ( x ) − 2 x ( − xJ ( x ) + 2 J ( x ) ) =3300101= 2 x 2 J 0 ( x ) + x ( x 2 − 4 ) J1 ( x ) .Вернемся к вычислению интегралов S1 и S2 .
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.