1625913085-c7c8a0f4cc2f319e4e81be4a1f4ed926 (532416), страница 54
Текст из файла (страница 54)
Обозначения: с".и — линейное и-мерное пространство, сс„ арифметическое п-мерное пространство, Я— линейное пространство квадратных матриц порядка и, Рспс — линейное пространство многочленов степени не выше и. Через Е„', сс„*, сс„' „, Рс"с* обозначаются соответствующие сопряженные пространства. Стандартный базис в пространстве сс„я„состоит из матричных единиц Еьо с, ) = 1, ..., и (см. введение к З 15). В этом базисе коэффициенты линейной функции 1., заданной на сс„я„, естественным образом располагаются в матрицу: на пересечении ее с-й строки и йпго столбца стоит коэффициент сс. = 1(Есз). Матрицу С = ~ с„~~ мы будем называть координатной матрицей линейной функции. В некоторых задачах, относящихся к линейным функциям на линейном пространстве векторов — направленных отрезков (в геометрическом векторном пространстве, обозначаемом через бз или бз в соответствии с размерностью) используется понятие ортогональной проекции вектора.
Напомним его. Векспорной ортогональной проекцией вектора АВ на прямую или плоскость называется вектор АсВм где А, и Вс — ортогональные проекции точек А и В. Скалярной проекцией векгпвра АВ на ось (т. е. прямую, на которой задано направление при помощи ненулевого вектора а) называется число х ~А~ Вс 5 где знак + или — выбирается в зависимости от того, одинаково или противоположно направлены векторы а и АсВм Определение линейной функции. Примеры линейных функций (31.1 — 31.32) 31.1.
Какие условия выделяют линейные функции из остальных линейных отображений? 31.2. Как преобразуется строка коэффициентов линейной функции при изменении базиса? 286 Гл. 1е. Функции на линейном проетпранетаое 31.3. Как выражаются через базисные векторы коэффициенты линейной функции в базисе е? 31.4.
Выпишите строку коэффициентов нулевой линейной функции. 31.5. Может ли для линейной функции У, заданной на Ен, при всех х Е Е„выполняться: 1) неравенство Г (х) ) 0; 2) неравенство Г (х) ) 0; 3) равенство г (х) = и? 31.6. Даны линейная функция Г на Е„и число а. Всегда ли найдется такой вектор х из Е„, что 1 (х) = а? 31.7. Определить множество значений произвольной линейной функции на вещественном линейном пространстве. 31.8.
Пусть ф, с2, сз) координатный столбец вектора х Е Ез в некотором базисе. Будет лн линейной функция Г на Ез, определенная равенством: Ц 1(х) = ~1 + ~э, '2) Г(х) = ~1 — (~2); 3) 1(х) = (1 +1; 4) 1(х) = ~1+ 2~э — З~з? 31.9. Выписать строку коэффициентов функции Г в случаях 1), 4) задачи 31.8. 31.10.
В некотором базисе пространства Ез функции Г и я имеют координатные строки соответственно (1, 2, 3) и (3, 2, 1). Найти координатные строки функций: 1) 1+8:, 2) Ы; 3) 38; 4) У вЂ” 8. 31.11. 1) Пусть а .-- вектор из пространства Ез. Сопоставим каждому вектору х из Ез его скалярную ортогональную проекцию на осев определяемую вектором а. Доказать, что этим определяется линейная функция на Ез. Найти координатную строку этой функции в каком-нибудь ортонормированном базисе пространства Ьз. 2) Пусть т какая-нибудь плоскость в пространстве Ез. Сопоставим каждому вектору из Ез длину его ортогональной проекции на ш.
Будет ли полученная числовая функция линейной? 31.12. 1) Пусть а фиксированный вектор на плоскости Е2. Сопоставим каждому вектору х из Еэ число, равное площади ориентированного параллелограмма, построенного на векторах а и х. Доказать, что этим определена линейная функ- з Уб Линейные функции 287 ция на Ев, и вычислить ее координатную строку в каком-нибудь ортонормированном базисе.
2) Пусть а фиксированный вектор на плоскости Ез. Сопоставим каждому вектору х Е Еэ число, равное площади параллелограмма, построенного на векторах а и х. Будет ли построенная функция линейной? 31.13. 1) Пусть а и Ь . фиксированные векторы в пространстве Ез. Сопоставим произвольному вектору х Е Ез число, равное объему ориентированного параллелепипеда, построенного на векторах а, Ь и х, или нулю, если а, Ь и х компланарны.
Доказать, что этим определена линейная функция, и вычислить ее координатную строку в каком-либо ортонормированном базисе. 2) Пусть а и Ь фиксированные векторы в пространстве Ез. Сопоставим произвольному вектору х б Ез число, равное объему параллелепипеда, построенного на векторах а, Ь и х, или нулю, если а, Ь и х компланарны. Будет ли построенная функция линейной? 31.14. 1) Сопоставим столбцу высоты и отношение первых двух его элементов. Будет ли этим определена функция на Е„? 2) Сопоставим каждому столбцу высоты п сумму квадратов всех его элементов. Будет ли этим определена линейная функция на Я.„? 3) Сопоставим каждому столбцу высоты п его ю-й элемент.
Доказать, что этим определена линейная функция на Я„, и найти ее координатную строку в стандартном базисе пространства И„. 4) Сопоставим каждому столбцу высоты п сумму его элементов. Доказать, что этим определена линейная функция на Я.„, и найти ее координатную строку в стандартном базисе пространства ?с„. 31.15. Функция 1г Х сопоставляет каждой квадратной матрице Х порядка п ее след. Проверить, что эта функция является линейной, и найти ее координатнук> строку (координатную матрипу) в стандартном базисе пространства матриц.
31.16. Пусть С квадратная матрица порядка п. Сопоставим каждой квадратной матрице Х порядка п число Фг (С Х). Показать, что этим определена линейная функция на пространстве Е„~„, и найти ее координатную строку (координатную матрицу). 288 Гл. 12. Функции на линейном проетранетпее 31.17. Пусть 1 -- какая-нибудь линейная функция, определенная на пространстве Я.пкп.
Доказать, что существует такая квадратная матрица С, что для произвольной матрицы Х б Япкп выполнено равенство 1 (Х) = $г (С Х). 31.18. Пусть линейная функция 1 на пространстве Япк„ для любых двух квадратных матриц А и В порядка п удовлетворяет условию 1(АВ) = 1(ВА). Доказать, что 1' определяется равенством 1 (Х) = о ог Х. 31.19. 1) Сопоставим каждому многочлену р (1) степени < 3 число 1 Г (р) = (1+ 1') р (1) 11. -1 Доказать, что этим определена линейная функция на пространстве многочленов Р1~~, и вычислить ее координатную строку в базисе из многочленов 1, 1, гР, гз. 2) Сопоставим каждому многочлену р (1) степени < 3 число 1 1(р) — р(1 ) еМ. о Доказать, что этим определена линейная функция на пространстве многочленов Р1~), и вычислить ее координатную строку в базисе из многочлснов 1, 1, гР, 1з.
31.20. Сопоставим каждому многочлену р(1) степени < и его значение при 1 = О. Доказать, что этим определена линейная функция на Р~п~, и вычислить ее координатную строку в базисе 1, г, г~, ..., 1". 31.21. Пусть |о фиксированное число. Сопоставим каждому многочлену р(г) степени < п его значение при е — 1о. Доказать, что этим определена линейная функция у на пространстве Р("). Вычислить координатную строку функции еа в базисах 1, 1, ..., 1п и 1, 1 — 1о, ..., (1 — 1о)п.
31.22. Пусть |и ..., О„эл — попарно различные точки числовой оси, аи, ..., р„лл — соответствующие этим точкам линейные функции на пространстве Р(п~, определенные в задаче 31. 21. 1) Доказать, что функции уп ..., ~р„лч линейно независимы. З 31. Лиллейноле фуикции 289 2) Доказать, что произвольная линейная функция на пространстве Рл" ~ может быть разложена в линейную коълбинацию функций оол, ..., оо„>л. 31.23. Линейная функция б сопоставляет каждому много- члену р(е) степени п (и < 2) его свободный член. Разложить эту функцию в линейную комбинацию функций оол, лов, уоз, сопоставляющих каждому многочлеву его значение соответственно при 1 = 1, 1 = 2 и 1 = 3.
31.24. Пусть 1е -- какое-нибудь, а 1л, ..., 8„о л — попарно различные вещественные числа. Доказать, что найдутся такие числа Лл, ..., Л„ом что для любого многочлена р (е) Е РОО будет выполнено равенство р(оо) = Л~р(~л) +... + Л„лр(ли о>). 31.25. Пусть й натуральное число. Сопоставим каждому многочлену р1е) степени < п значение его й-й производной при ~ = О. Доказать, что этим определена линейная функция на пространстве Р~"~, и вычислить ее координатную строку в базисе 1, 1, е~, ..., ~".
31.26. Пусть й -- натуральное число, lо < и, 1о - вещественное число. Сопоставим каждому многочлену р ® степени не вьппе п значение его к-й производной при 1 = 1о. Доказать, что этим определена линейная функция на пространстве Р1"~. Вычислить ее координатную строку в базисах: 1) 1,.1,,1"; 2) 1 1 — 1о (е — ~о) . 31.27. Линейные функции бс, бл, ..., б„определены на пространстве Р~ "~ равенствами бь(р) = (1=О, 1, ..., и). бь( ) л=ло Доказать, что функции бе, бл, ..., б„линейно независимы. 31.28. Функции бс, бл, ..., б„определены так же, как в задаче 31.27.














