53634040 (516242)
Текст из файла
Ч _ 2 _ 01_ 08N = 10 1,1 1, 2 1,3 1, 4 1, 5 1, 6 2,1 2, 2 2, 3 2, 4 2,5 2, 6 3,1 3, 2 3,3 3, 4 3,5 3, 6 Ω= 4,1 4, 2 4, 3 4, 4 4,5 4, 6 5,1 5, 2 5,3 5, 4 5,5 5, 6 6,1 6, 2 6,3 6, 4 6,5 6, 6 Т .о. для суммы числа выпавших очков мы имеем следующие пространствоэлементарных событийΩ A = {2,3,3, 4, 4, 4,5,5,5,5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7,8,8,8,8,8,9,9, 9,9,10,10,10,11,11,12},а для произведения выпавших очковΩ B = {1, 2, 2,3,3, 4, 4, 4,5,5, 6, 6, 6, 6,8,8,9,10,10,12,12,12,12,15,15,16,18,18, 20, 20, 24, 24, 25,30,30,36}по классическому определению вероятности найдем искомые вероятностиa ) A = {2, 3,3, 4, 4, 4,5, 5,5,5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7,8,8,8,8,8,9,9,9,9,10,10,10},33P== 91.66% ( сумма ≤ N )36б ) A = {1, 2, 2,3,3, 4, 4, 4,5,5, 6, 6, 6, 6,8,8,9,10,10}19= 52.77% ( произведение ≤ N )36в ) A = {10,10, 20, 20,30}P=P=5= 13.88% ( произведение кратно N )36Ч _ 2 _ 02 _ 08n1 = 2; n2 = 5; n3 = 2; n4 = 1m1 = 1; m2 = 3; m3 = 1; m4 = 1n = n1 + n2 + n3 + n4 = 10m = m1 + m2 + m3 + m4 = 6неупорядоченный набор из m изделий состоит из {1, 2,..., m1} первосортныхизделий ,{m1 + 1, m1 + 2,..., m1 + m2 } второсортных изделий ,{m1 + m2 + 1,..., m1 + m2 + m3 } третьесортных изделий ,и {m1 + m2 + m3 + 1,..., m} изделий четвертого сорта.Кол − во всех наборов изделий 1 сорта равно Сnm11 ;2 сорта − Cnm22 ;3 сорта − Cnm33 ;4 сорта − Cnm44Так как для получения набора из m изделий , содержащего m1 , m2 , m3 , m4соответсвующих сортов, можно соединить любой набор из соответствующихсортов ⇒ кол − во элементарных событий , благоприятствующихрассматриваемому событию равно Сnm11 ⋅ Cnm22 ⋅ Cnm33 ⋅ Cnm44 ⇒⇒ искомая вероятность составляет P ==2 ⋅ 10 ⋅ 2 ⋅ 1= 19.0476%210Сnm11 ⋅ Cnm22 ⋅ Cnm33 ⋅ Cnm44Сnm=С21 ⋅ C53 ⋅ C21 ⋅ C11=С106Ч _ 2 _ 04 _ 08k = 13; n = 3т.к.
пассажиры не выходят на первом этаже, то кол − во этажей , на которыхони могут выйдти равно ( k − 1) ⇒ общее число возможных исходов равно ( k − 1) n == 123 = 1728A = {все пассажиры вышли на разных этажах}B = {хотя бы двое сошли на одном этаже}рассмотрим событие А. Если произошло А, то это означает, то не все пассажирывышли на разных этажах ⇒ хотя бы двое сошли на одном этаже ⇒ B = А ⇒⇒ P( B ) = P ( А) = 1 − P( A).Для события А число способов, которыми можно распределить n пассажиров по( k − 1) этажам равно Аkn−1 = A123 = 1320(число исходов, благоприятствующих событию A)по классическому определению вероятностиP ( A) =Аkn−11320== 76.38% ⇒ P( B) = 1 − P ( A) = 23.61%n(k − 1) 1728замечание Аkn−1 = Ckn−1 ⋅ n! =( k − 1)!(k − 1 − n)!Ч _ 2 _ 06 _ 08T1 = 900 ; T2 = 1130 ; t = 20пространство элементарных исходов можно представить на плоскости в виде квадрата состороной (T2 − T1 ).
Площадь квадрата равна (T2 − T1 ) 2встреча произойдет, если первое событие началось на t1 (t1 ∈ [0;10] мин) раньше второго иливторое событие началось на t2 (t2 ∈ [0; t ] мин) раньше первого. Этим условиям соответствуетзакрашенная часть графика.A = {события перекрываются во времени}B = {события не перекрываются во времени}рассмотрим событие A. Если А не произошло, то это значит, что события не перекрываются ⇒⇒ A = B ⇒ P ( B) = P ( A) = 1 − P( A); по определению геометрической вероятности11112222T − T − 10 ) + (T2 − T1 − t )(150 − 10 ) + (150 − 20 )S не заш 2 ( 2 122== 2= 81.11% ⇒P( B ) =S квадр(T2 − T1 ) 21502⇒ P( A) = 1 − P ( B) = 18.88%τ210 минt минT2T1T1T2τ1Ч _ 2 _ 08 _ 08k1 k281 37вероятность выбора доброкачественного изделия равна k ⇒ (1 − k ) − вероятностьвыбора бракаA − из первой партии выбрали бракаванноеB − из второй партии выбрали бракаванноесобытия A и B попарно независемыa ) хотя бы 1 бракованноеэто событие состоит из суммы следующих событий1) из 1 партии выбрали бракованное; из 2 партии выбрано бракованное2) из 1 партии выбрали бракованное; из 2 партии выбрано доброкачественное3) из 1 партии выбрали доброкачественное; из 2 партии выбрано бракованное⇒ PA = P ( AB ) + P ( AB ) + P ( AB ) = P ( A) ⋅ P ( B ) + P ( A) ⋅ P ( B ) + P ( A) ⋅ P ( B ) == (1 − k1 )(1 − k2 ) + (1 − k1 ) ⋅ k2 + k1 ⋅ (1 − k2 ) = 70.03%б )2 бракованныхэто событие состоит из произведения событий A и B ⇒⇒ PB = P ( AB ) = P ( A) ⋅ P ( B ) = (1 − k1 ) ⋅ (1 − k2 ) = 11.97%в )1 бракованное и 1 доброкачественноеэто событие состоит из суммы следующих событий2) из 1 партии выбрали бракованное; из 2 партии выбрано доброкачественное3) из 1 партии выбрали доброкачественное; из 2 партии выбрано бракованное⇒ PA = P ( AB ) + P ( AB) = P ( A) ⋅ P ( B ) + P ( A) ⋅ P ( B ) = (1 − k1 ) ⋅ k2 + k1 ⋅ (1 − k2 ) = 58.06%Ч _ 2 _10 _ 08k = 11Ci − {на i − м броске выпал герб}P (Ci ) = P(Ci ) = 1 / 2тогда вероятность выйгрыша игрока AP ( A) = P(C1 ) + P(C1 ) ⋅ P(C2 ) ⋅ P (C3 ) + P(C1 ) ⋅ P(C2 ) ⋅ P(C3 ) ⋅ P(C4 ) ⋅ P (C5 ) + ...
==1 1 1 1 1 1 1 1 1 1 k −1 1 1 10 1+ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ = ∑ = ∑ = 66.66%2 2 2 2 2 2 2 2 2 2 i = 0 4i 2 i = 0 4iпри сколь длительной игре k → ∞ 1 k −1 1lim ∑ ik →∞ 2 i =0 4 1 k −1 1 = lim ∑ i 2 k →∞ i =0 41P ( B) = 1 − P( A) =3 1 4 2 = ⋅ = = P ( A) 2 3 3Ч _ 2 _11_ 08m=9a) номера шаров в порядке поступления образуют последовательность1,2,..., mвсего существует m! размещений. Т .е нам надо найдти вероятность11 размешения из m! размещений ⇒ PA = = 2.7 ⋅ 10−3 %m!1lim PA = lim=0m − >∞m −>∞ m!б ) хотя бы 1 раз совпадает номер шара и порядковый номер извлечения.Bk = {к − й шар имеет номер k}тогда искомая вероятность есть m nP ∑ Bk = ∑ P( Bi ) − ∑ P( Bi B j ) + ∑ P( Bi B j Bk ) − ...
+ (−1) m+1 P( B1 B2 ...Bm ) =1≤i < j ≤ m1≤i < j < k ≤ m k =1 i =1= P1 − P2 + P3 − ... + (−1) n +1 Pmподсчитаем вероятность Pn (n = 1,2,..., m), т.е. вероятность произведениясобытий B1 B2 ...Bn . Всего существует n! размещений ⇒1 m m (−1) k −1 m (−1) k −1( n = 1,2,..., m) ⇒ PB = P ∑ Bk = ∑=∑= 63.21%!!n!kkk=1k=1k=1k −1m(−1)1lim PB = lim ∑= 1 − ≈ 63.21%m −>∞m −>∞k!ek =1в ) нет ни одного совпадения номера шара и порядкового номера извлеченияPn =рассмотрим противоположенное событие, т.е.
когда есть хотя бы1 совпадение. А эту вероятность мы нашди в предыдущем пункте. ⇒⇒ P(C ) = P( B) ⇒ P(C ) = 1 − P( B) = 36.78%lim P(C ) = 1 − lim P( B) = 36.78%m −>∞m −>∞Ч _ 2 _13 _ 08N1M1N2M2K13124610A = {из второй корзины извлекли белый шар}выдвигаем гипотезыH i (i = 0,.., K ) − из K переложенных шаров i являются черными. Тогда ( K − i ) являются белымиТ .о. после перекладывания во второй корзине оказалось ( N 2 + K − i ) белых шаров и( M 2 + i ) черных. По классическому определению вероятности найдем вероятностьизвлечения белого шара из второй урны после перекладывания. P =Т .о. P( A / H i ) =N2 + K − i.N2 + M 2 + KN2 + K − iN2 + M 2 + Kнайдем вероятность гипотезы H i : P( H i ) =CNK1−i ⋅ CMi 1CNK1 + M1по формуле полной вероятности искомая вероятность равнаKKCNK1−i ⋅ CMi 1i =0i =0CNK1 + M1P( A) = ∑ P( H i ) ⋅ P( A / H i ) = ∑⋅10C10−i ⋅ C i 4 + 10 − iN2 + K − i= 46%= ∑ 13 K 12 ⋅N 2 + M 2 + K i =04 + 6 + 10C25Ч _ 2 _15 _ 08m1 m2 m3 n1n2n3j40 30 30 80 80 90 2выдвигаем гипотезыH i − купленное изделие с i − го завода (i = 1,2,3)mi100A = {куплено первосортное изделие}очевидно, что при выполнении i − й гипотезы шанс покупки первосортногоP( H i ) =ni100по формуле полной вероятностиP ( A) = P( H1 ) ⋅ P( A / H1 ) + P( H 2 ) ⋅ P( A / H 2 ) + P( H 3 ) ⋅ P( A / H 3 ) =изделия равен ni ⇒ P( A / H i ) =3mi ni⋅i =1 100 100по формуле Байеса=∑P ( H j / A) =P ( H j ) ⋅ P( A / H j )P( A)mj=⋅nj100 100 = 0.24 = 28.91% mi ni 0.83⋅∑i=1 100 100 3.
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.