Главная » Просмотр файлов » Часть 5. Дифференциальные уравнения в примерах и задачах.

Часть 5. Дифференциальные уравнения в примерах и задачах. (509319), страница 21

Файл №509319 Часть 5. Дифференциальные уравнения в примерах и задачах. (Часть 5. Дифференциальные уравнения в примерах и задачах.) 21 страницаЧасть 5. Дифференциальные уравнения в примерах и задачах. (509319) страница 212013-08-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 21)

8.1, имеем ( 14 з 2 уа — — 0; уо(х) = ~(1 — у )дг= —; у,(х) = / (( — — ~ о(!=в а а У(2 15 'ьа ха ха хо хп у~ Г 11 х х х х ~, 2 20) ) 2 20 160 4400 о Оценим погрешность полученного приближения. Легко установить, что решение данной задачи существует и единственно на сегменте — -т- (~ 1 о'4 < х < -,—, так что последовательные приближения 1 т'4 у м(х) = уо+~1(1, у (1))Ж оо равномерно сходятся на этом сегменте к решению интегрального уравнения р(, ) = до + / У(1, р(1)) й. (2) ум 'я оо Втт) ~(2+о) о а(2 ы, ю Шо,оаоя М зГ2(2+Ь)з' дЬ (,(2+Ь)з) находим, что Ь = 2 и а ) Ьу(2) = ~г — — > 0,1.

Следовательно, на сепченте -О,! < 1 < 0„1 2 2 - 'ЬУ(2) — —,~З4 —,44 существует единственное решение. Если применим лемму Бихари, то сможем указать сегмент существования и единственности ! 1 — 3 <1< 3. Действишльно, из интегральных уравнений рассматриваемой задачи следует, по (х(1)! < 1+ / (у(о)!'до, (у(1)! < 2+ /)х(о)! Ио, а о Гл. 1. 2(иФфереиннальиые уравиещщ первого порядка Вычитал почленно из (1) равенство (2) при х > хо и оценивая соответствующие разности лля и Е Ео, получим « « !У(х)-уо! ( /И(С, у(С))!а =/!р(С))41, Р(С) =И(С, у(С))!, «о «0 « ««з « !У(х) — уз(х)! ~( э/(1С(С, у(С)) — С (С, уо)1!йС (~ Ь / с(х! / ЧЗ(С) 5(С = Ъ /(х — и)уо(и) 5(в, (3) «О «0 Ь« !У(х) — у«(х)! ~ (/ )~(С, у(С)) — у(15 у„з(С))(о(С (~ — /(х — и)"Уз(п)5(п, «0 «0 где Ь вЂ” постоянная Липпзица Функции у по переменной у в прямоугольнике СС = ((х, у) Е Ж~: !х — хо! < о, !у — уо! ( Сзо) В рассматриваемом случае Ь ~ (шах !2У(х)! = 2ЦуЦ !С(в) = !и — у (и)! < !п!+ ЦУЦ, и = 3 !«,гзоя хо — — О, поэтому из (3) получаем оценку 0,5 ЦУ вЂ” УзЦ ( — ЦУЦ' /(х — п) (и+ЦУЦ )5(и < — ЦУЦ /(0,5 — и) (и+ЦУЦ~)5(и = (О,1+ЦУЦ ).

(4) Остается оценить ЦУЦ на сегменте 0 < х < 0,5, который содержится в сегменте (--г —, -5 — ~. 1 1 С Из леммы Бихари следует, что !д! < Т5 ~х (см. пример 201), где С = шах $- = 0,125. ОД«<0,5 Поэтому ЦУЦ ( -1 — -ф20-05 < 0„134. Принимая во внимание оценку (4), окончательно имеем 0 125 Цд — узЦ < О,б. ГО '. М 203. Пользуясь каким-либо достаточным условием единственности, выделить области на плоскости хОУ, в которых через каждую точку проходит единственное решение уравнения: а) у' = 2ху+ у; б) у = 2+ ~/«у — 2х; в) (х — 2)у = згу — х; г) у' = 1+ !Лу. М а) Функция у(х, у) = 2ху+ у' непрерывна в любой части плоскости хОУ, а ее производная В = 2(х 4 у) ограничена в любой конечной части Р этой плоскости.

Следовательно, дг У по теореме Пикара через каждую точку (хо, уо) Е Р проходит единственная интегральная кривая уравнения а). б) Функция С (х, У) = 2+ (гу- 2х непрерывна у (х, у) Е Жз, однако ее частная производная ч- = 3(у — 2х) з ограничена только при у и' 2х. Тогда, по теореме Пикара, через каждую точку ОГ 1 Уд (хо, уо) Е Ж, где уо Ф 2хо, проходит единственная интегральная кривая. в) Воспользуемся теоремой п.8.2. Функция Г(х, у, у') = (х — 2)у' — /у+ х удовлетворяет условиям: 1) она непрерывна при у > 0; 2) частная производная — „-г = х — 2 ~ 0 при х Ф 2; др ду' 3) ЧаСтяая ПрОИЗВОдиая  — — — -ч„-,- ОтраинЧЕНа Прн у > Е > 0; 4) уо « -' 5 Х вЂ” ЕдИНСтВЕННЫй Ог" 1 2су х — 7 действительный корень уравнения х.(х, у, у') = О.

Следовательно, через кюкдую точку (хо, уо) плоскости хОУ, где хо ~ 22 .55( (уо > о > О, проходит единственная интегральная кривая уравнения в). г) ясно, по при у и' ~т + Бог, й Е Е, правая часть уравнения непрерывна и имеет ограниченную частную производную по у. Следовательно, по теореме Пикара, через кажлзчо точку плоскости хОУ, эа исключением прямых у = от+ух, проходит единственная интегральная кривая рассматриваемого уравнения.

И $8. Суп!еетповввие и сдиихшевиасеь ршиешш 91 Пввиечевве. Если функпня т в задаче Коши имеет в прямоугольнике и ограниченную частную производную ч»е, то она автоматически удовлепюрвет условию Лившица. дг 204. При каких неотрицательных а нарушается единственность решений уравнения у' = (у)" и в каких точках? м При неотрицательных а функция у(х, у) = !у~' непрерывна, поэтому уравнение имеет решения. Если у ~ О, то частная производная н- = а1У~' збпу существует и ограничена в у каждой конечной части плоскости хОУ. Следовательно, по теореме Пикара, если у ~ О, то при любом а существует единственная интегральная кривая, проходяшдя через заданную точку.

Если у = О, но а > 1, то функция у удовлетворяет условию Липшица: !У»(' = !у,!' ')У,) < Ь|у,~ (здесь у! — — 0). Поэтому, согласно теореме Пикара, единственносп решения и в этом случае гарантирована. Остается проверить случай, когда 0 < а < 1 н у = О. Возьмем произвольную точку !!у(хе, 0) на оси Ох. Очевидно, что через эту точку прохолит 1 — » интегральная кривая у = О. Однако через эту точку проходит также кривая ?' — »бп у = * — хе, являющаяся решением рассматриваемого уравнения. Таким образом, при 0 < а < ! в точках (х, 0) б Е' наруцшется единственность решений данного уравнения.

в 205. С помощью необходимого и достаточного условия единстиенности для уравнений вида у' = у(у) исследовать дифференциальные уравнения: а) у =(у — 1)(г!у'; б) у =агссозу; (О, д=О м Согласно указанному критерию, если непрерывная функция у ~ О, то решение уравнения существует и единственно. Если же у(у) = 0 при у = С = сопл!, то вопрос о единственности с ! ле решается с помощью исследования на сходимость несобственного интеграла з! -у(-) .

Если этот »» ннтв»рал расходится, то у = С вЂ” частное решение, в противном случае через кажлую точку прямой у = С проходят другие инте»ральные кривые. В случае а) имеем С = 1 и С = О. Функция г'(у) = (у — 1)тгу' непрерывна прн у > О. Поскольку несобственные интегралы ! о йд »(у (У» > 0; у» х !) и / (О < уо < 1) (У-1) гу ~» (д- !)ьгд' расходятся, то через каждую точку полуплоскости д > 0 проходит единственная интегральная кривая даннопз дифференциального уравнения. 1 В слУчае б) С = 1 и несобственный интегРал з! — „их»до»у (-1 < У, < 1) сходитса„так как л „= О ~~ — ) при у -» 1 — О.

Поэтому через каждую точку (х, у), где -! < у < 1, ~»Г1-у проходит единственная интегральная кривая, а через каждую точку прямой у = 1 — любое число имгегралънъ»х кривых. В случае в) С = 0 и С = 1. Так как несобственный интеграл е »» / » = / — (0<у»<1) сходится, а несобственный интеграл = / —, (у.>О, У,~П »» и»» Гл. 1. Дифференциальные ууавнеивв верного порядка 92 расходится, то через кюкпую точку верхней полуплоскоспг, за исключением прямой у = О, проходит единственная интегральная кривая. Предлагаем читателю выполнить геометрическую иллюстрацию рассмотренных случаев. С» 206. При каких начачьных условиях существует единственное решение следующих уравнений и систем? а) у" = !уу+ то/хх; в) у — уу' = тз/уу' — х; б) (х+ 1)у = у -Ь т/у; ох з г) — =у +!п(С+ !), гй о(у о х — = чгу — С.

дС ум = - (уо - о уу' - *). у г) Так как функции С!(С, х, у) = у~-Ь(п(С+!), Ст(С, х, у) = — (гу — С и их частные производные Ь 'г б Си = О, -д — ' —— Зу, д-'- = — — 'С вЂ”, д — =, — непрерывны при х ~ О, С > — 1, у Ф С, то через каждую точку (Са, хо, уо), где Со > -1, уо ~ Со, хо ~ О, проходит единственное решение (х(С), у(С)). Заметим, что в случае системы уравнений -~С- — — 2, ВТ = С, и т.д., ее решение лх да является вектор-функцией с координатами х(С), у(С) и т.

д. С» 207. Могут ли графики двух решений данного уравнения на плоскости хОУ пересекаться в некоторой ~очке (х,, уа) а) для уравнения у' = х + у'? б) для уравненил у" = х + у'? < а) Так как функция ~(х, у) = х + у непрерывна вместе со своей частной произволной 2 Х = 2У в любой конечной части паоскости хОУ, то, согласно теореме Пикара, через каждую д у точку (хо, уо) проходит единственная интегральная кривая уравнения у' = х+у', т. е, пересечение графиков двух его решений в этой точке невозможно. б) В силу непрерывности функции 1(х, у) = х + у и ее частных производных ча-.

= 2у, 2 дг дг г — т = О, через каждую точку (хо, уа, уо) проходит единственная интегральная кривая. Последнее, ду однако, не исключает того, что через точку (хо, уо) проходят две различные интегральные кривые с различными угловыми коэффициентами касательных к ним, т.е. пересечение графиков двух решений в некоторой точке (хо, у,) возможно. Этот факт можно установить и непосредственно, дважды проинтегрировав данное уравнение и приняв во внимание, что у(хо) = уо. Тогда получим 3 2 з хох хо l 2 У(х) + уах -Ь Уо Уоха + + (х С)у (С) дС. б 2 3 оо Очевидно, что любая кривая у(х) проходит через точку (ха, уа), однако кажлая из них имеет в этой точке "свою" кнсательную с угловым коэффициентом уа. М М Воспользуемся утверждениями п.8.4.

В случае а) имеем ?(х, у, у') = гйу+ Кх. Функция Г' и ее частные производные -д- — — — т —, —, —— О непрерывны при у и' Т + йя, й Е К, ! дг я У сао у' ду полому в достаточно малой окрестности каждой точки (хо, уо, уо), где уа ~ Т + ля, существует х единственная интегрыьная кривая, проходящая через эту точку. б) Функция С (х, у, у') = — -Д- и ее частные производные уа- = - — -1-+ 2 — ~; — ~, —,. — — О дг ?~уй+П д,. непрерывны при х Ф -1 и у > О. Следовательно, через каждую точку (ха, уо, уао), где хо ф ! и уа > О, проходит елинстаенная интегральная кривы. в) Поскольку функция С(х, у, у', у') = — ! у" — тУУ вЂ” х) вместе с частными производными у~ = --т(у — ьГУ' — х), ~ = — - о, — ~ = — непдепывна цпи У» О и У ~ х, то через каждую точку (хо уо, уо, уа'), где уа Ф О и уаг Ф хо, прохолит единственная интегральная кривая уравнения я 8.

Сущеепюввяие и едяиствеииееп, решения 93 208. Могут ли графики двух решений данного уравнения на плоскости лОу касаться друг друга в некоторой точке (яо, уо) а) для уравнения у' = я+ уз? 6) для уравнения у ' = я + уз? в) для уравнения уо' = х+ ут? м а) касание двух различных интегральных кривь1х в точке (ло, уо) невозможно в силу теоремы существования н единственности (см. пример 207, а)). 6) Касание двух различных интегральных кривых означает, что через точку (ао, уо, у„') проходят две интегральные кривые уравнения уо = я+у~. Последнее же невозможно в силу теоремы сущеспювания и единственности решения. (см.

Характеристики

Тип файла
DJVU-файл
Размер
3,39 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее