Уравнения пространственного движения ЛА (1245317), страница 2
Текст из файла (страница 2)
Спроецировав эти вектора на оситраекторной системы, можно получить нужные проекции переносной& sin θ , Ω yk Ψ& cos θ , Ω zk θ& . В результате уравнение (1)скорости Ω xk Ψ&k& sin θ Vk VΨ &m 0 m Ψcos θ 0 Fk , или, после выполненияполучит вид 0 θ& 0 &kV0 F , или в болеевекторного произведенияm 0 mVk θ& k& 0 Vk Ψ cos θ компактном виде&kVmVk θ& Fk ,& cos θ Vk Ψ(1к)где Fk - вектор результирующей всех внешних сил, представленныйсвоими проекциями на оси траекторной системы.Векторное уравнение (1к) соответствует системе из трех скалярныхуравнений, которые после приведения к нормальной форме при приобретут вид:FykFzk& k Fxk ,& Vθ& , Ψ.mmVkmVk cos θУравнения динамики движения ЦМ в связанной СК.5Переносной угловой скоростью в этом случае является вектор угловойскоростивращениясвязаннойСКотносительнонормальнойω (ω x , ω y , ω z ) T , проекциями которого на оси связанной системы являютсяугловые скорости крена x , рыскания y и тангажа z .
Следует обратитьвнимание на то, что эти угловые скорости являются теми величинами,которые непосредственно могут быть измерены на борту ЛА.Обозначив проекции вектора земной скорости на оси связанной СК Vkx,Vky и Vkz соответственно, т.е. записав Vkсв = (Vkx,Vky,Vkz)T и подставиввектора ω и Vkсв в уравнение (1), после преобразований, аналогичныхпроизведенным выше, можно получить следующее уравнение:& kx Vkz ω y Vky ω z V& mV(1св)ky m Vkx ω z Vkz ω x Fсв ,& kz Vky ω x Vkx ω y Vгде Fсв - вектор результирующей всех внешних сил, представленныйсвоими проекциями на оси связанной системы.С учетом сделанных допущений действующие на ЛА силы - это вес ЛАG mg , тяга P , и результирующая аэродинамическая сила R a , т.е.F R a P G . Вес очевидным образом выражается проекциями на осинормальной СКG g (0 mg 0) T , аэродинамические силы обычноопределяются в скоростной R aa (X aYaZ a ) T , реже - в связанной СКR aсв (X Y Z) T , тяга - в связанной СК, причем конкретные выражениядля проекций тяги могут быть разными в зависимости от геометрии еедействия.
Например, если тяга величиной P приложена вдоль продольной осих, то Pсв (P 0 0) T , если - в плоскости симметрии под углом т, тоPсв ( P cos тP sin т0) T .Для получения нужных проекций на оси траекторной или связаннойсистем необходимо воспользоваться соответствующими матрицами переходаag свgagFk D gk D свg D св R aa D k D g Pсв D k G g , Fсв D св R aa Pсв D св G g .Следует обратить внимание на то, что динамика поступательногодвижения существенно зависит от параметров углового движения.
Вопервых, в сами уравнения (1св) входят угловые скорости, во вторых, отпараметров углового движения зависят аэродинамические силы и, в рядеслучаев - тяга, а в третьих, углы входят в матрицы переходасвaaD свg D g ( ψ, , γ) , D св D св (α, β ) .6Для оценки маневренных возможностей ЛА удобно записать уравнениядинамики движения ЦМ через перегрузки.nопределяетсясоотношениемВекторперегрузкиR Ra P F Gn, т.е. F mgn G .
Аналогично силам перегрузкуmgmgmgможно записать в проекциях на оси связанной и траекторной СК и, подставивв выражения для соответствующих проекций равнодействующей силы Fсв иFa , получить уравнения динамики движения ЦМ через перегрузки. Следуетобратить внимание на то, что проекции перегрузок в связанной СК nx, ny, nz(продольная, нормальная и поперечная перегрузки) являются темивеличинами, которые непосредственно могут быть измерены на борту ЛА.В связанной СКe yx n x e yx n x 0 n x n x sin g Fсв mg n y Dсв mg mg n y mgeyy mgn y e yy mgn y cos cos где eyx, eyy, e yz n z eyz n z 0 n z nsincos z eyz - элементы второго столбца матрицы D gсв , и уравнение (1св) примет вид& V Vkz y Vky z n x e yx kx& Vky Vkx z Vkz x g n y e yy .& VVky x Vkx y n z e yz kz (1свn)В траекторной СКn xk 0 n xk sin Fk mgn yk Dgk mg mg n yk cos , n zk 0 n zk&Vn xk sin kи уравнение (1к) примет вид Vk & g n yk cos ,& cos Vk n zk(1кn)или в нормальной скалярной форме& g( n sin ) ,Vkxkg& gn zk .( n yk cos ) , & VkVk cos Уравнения кинематики движения ЦМ.Если обозначить r радиус-вектор, описывающий текущее положениеЦМ ЛА относительно нормальной земной СК, которое при сделанныхдопущениях совпадает с началом координат всех используемых подвижныхСК, то уравнение кинематики движения ЦМ будет иметь видr& Vk ,(3)7 x& g Vkxg или в проекциях на оси нормальной земной СК y& g Vkyg .
Так как z& g Vkzg движение ЦМ принято описывать относительно какой либо из СК, связанныхс Землей, то индексы g обычно опускают, а вместо yg, или y в нормальнойземной СК используют обозначение H (высота).При определении земной скорости в траекторной СК (т.е. из уравнений(1к)) уравнение (3) примет вид x& Vk cos cos y& D k 0 V , (3к)sin gk z& 0 cos sin а при определении Vk в связанной СК (т.е. из уравнений (1св)) x& Vkx y& D св V .g ky z& Vkz (3св)Для задач наведения кинематика движения ЦМ часто рассматриваетсяне в прямоугольной, а в сферической системе координат, т.е. в переменных r,, , где :r x g2 H 2 z g2 - наклонная дальность, т.е.
модуль радиус-вектора; arctgHx 2g z g2- угол места, т.е. угол между горизонтальнойплоскостью и радиус-вектором; arccosxgx g2 z g2- угол между осью xg и проекцией радиус-вектора нагоризонтальную плоскость, называемый азимутом, если ось xg направлена насевер.Спроецировав вектор скорости на направление радиус-вектора,направление, перпендикулярное радиус-вектору в вертикальной плоскости,содержащей этот вектор, и третье направление, перпендикулярное первымдвум, и подставив эти проекции в (3), можно получить уравнениякинематики движения ЦМ в сферической системе:r& Vk (cos cos( ) cos sin sin ) ,r& Vk ( cos cos( ) sin sin cos ) ,(3сф)r cos & Vk cos sin( ) ,8Уравнения динамики движения вокруг ЦМ.Угловое движение ЛА вокруг ЦМ соответствует движению связаннойСК относительно нормальной.
Переносной угловой скоростью для уравнения(2) является вектор угловой скорости вращения связанной СК относительнонормальной ω (ω x , ω y , ω z ) T , проекциями которого на оси связаннойсистемы являются угловые скорости крена x , рыскания y и тангажа z .Уравнения динамики движения вокруг ЦМ получают, подставив в (2) этуугловую скорость и момент инерции и раскрыв векторное произведение.Если оси связанной СК совпадают с главными осями инерции, тоJ = diag(Jx, Jy, Jz)и при сделанных допущениях общее уравнение (2) приводится к видуx= ((Jy Jz) yz + MRx)/ Jxy= ((Jz – Jx) zx + MRy)/ Jy(2св)z= ((Jx – Jy) xy + MRz)/ JzЕсли кроме осевых моментов инерцииJx, Jy, Jzнеобходимоучитывать центробежный момент Jxy, т.е. JxJ = J xy 0 J xyJy000 ,J z тоx= (((JyJz)Jy+Jxy2)yz+(JzJxJy)Jxyxy+JyMRx+JxyMRy)/(JxJyJxy2),y= (((JzJx)JxJxy2)zx+(Jx+JyJz)Jxyyz+JxyMRx+JxMRy)/(JxJyJxy2),z= ((JxJy)xy+Jxy(x2y2)+MRz)/Jz.Заметим, что в общем случае момент инерции твердого телапредставляет собой симметричный тензор вида JxJ = J yx J zx J xyJy J zy22 J xz ( y z )dv J yz yxdvJ z zxdv22 ( x z )dv yzdv .22 zydv ( x y )dv xydv xzdvЗдесь интегрирование проводится по объему тела v; плотность тела.Очевидно, что Jxy= Jyx, Jxz= Jzx, Jyz= Jzy.Уравнение динамики углового движения в этом случае приобретет видJxx Jxyy Jxzz (Jy Jz)yz + Jyz(z2y2) + x(Jxyz Jxzy) = MRxJyy Jyzz Jxyx (Jz Jx)zx + Jxz(x2z2) + y(Jyzx Jxyz) = MReJzz Jxzx Jyzy (Jx Jy)xy + Jxy(y2x2) + z(Jxzy Jyzx) = MRz9Заметим, что эта система уравнений записана не в нормальной форме –для перевода к нормальной форме уравнение (2) должно быть домноженослева на матрицу J-1, что, очевидно, сделает запись системы уравнений внормальной форме очень громоздкой.Если ЛА приходится представлять как тело переменной массы, тоуравнение (1) приобретет вид& Ω L M ,J& Ω J ΩRи запись в скалярном виде окажется гораздо сложнее.Результирующий момент при сделанных допущениях складывается изаэродинамических моментов и моментов, возникающих от тяги двигателя,причем последние возникают лишь в том случае, если линия действия тягине проходит через ЦМ ЛА.
Отметим, что и аэродинамические и моменты оттяги определяются в связанной СК, т.е. для подстановки в уравнения (2св)дополнительных пересчетов не требуется.В некоторых случаях приходится учитывать также гироскопическиемоменты из-за вращения турбин двигателей. Если ось вращения турбинпараллельна продольной оси, а суммарный момент количества движениявсех вращающихся частей двигателя равен Lдв, то гироскопический момент в 0 проекциях на оси связанной СК имеет вид M г L дв ω z . ωy Кинематика углового движения ЛА.Хотя движение вокруг ЦМ описывается как угловое движение связаннойСК относительно нормальной, но для этого движения уравнения кинематикиобычно записывают также в одной из двух форм - в зависимости от того, какописывается вращение связанной СК относительно нормальной - в видеуглов Эйлера (рыскания, тангажа, крена) или - с помощью матрицыперехода D gсв (матрицы направляющих косинусов).
Т.е. кинематика угловогодвижения – это зависимость либо скоростей изменения углов Эйлера, либоскоростей изменения матрицы направляющих косинусов от угловыхскоростей по крену, рысканию и тангажу.Следует обратить внимание, что угловые скорости по крену, рысканию итангажу не совпадают с производными углов Эйлера по времени – угловыескорости по крену, рысканию и тангажу – это проекции вектора угловойскорости вращения связанной системы относительно нормальной на осисвязанной системы (ортогональной), а углы Эйлера (следовательно - и ихпроизводные) соответствуют поворотам вокруг осей разных систем.10Так как скорости изменения углов Эйлера не образуют прямоугольнуюсистему координат, то для получения кинематических уравнений движениявокруг ЦМ находят выражение угловых скоростей по крену, рысканию итангажу от скоростей изменения углов Эйлера, а затем решают эту системууравнений относительно нужных скоростей.Проецируя на оси связанной СК, получают следующую системууравненийω x γ& ψ& sin υ ;ω y ψ& cos υ cos γ υ& sin γ ;ω z ψ& cos υ sin γ υ& cos γ ,а решая ее относительно угловых скоростей крена, рыскания, тангажа,получают нужные уравнения кинематики, называемые уравнениями Эйлераυ& ω y sin γ ω z cos γ ;1(ω y cos γ ω z sin γ) ;(4э)cos υsin υγ& ω x (ω y cos γ ω z sin γ) .cos υСледует заметить, что здесь , но это ограничение заложено уже всамой процедуре перехода с помощью углов Эйлера.Для получения уравнений кинематики движения вокруг ЦМ сиспользованием матрицы перехода воспользуемся тем, что строки матрицыперехода от нормальной системы к связаннойψ& e xxDсвg = e xye xze yxe yye yze zx e zy e zz - это проекции ортов (всех трех) нормальной системы насоответствующую ось связанной.