Учебник - Механика. Методика решения задач - Русаков (1238761), страница 31
Текст из файла (страница 31)
6.15, известны масса грузаm1, масса ступенчатого блока m2, момент инерции блока J0 относительно его оси и радиусы ступеней блока R1 и R2 (R2 > R1). МассаГлава 6. Кинематика и динамика абсолютно твердого тела215нитей пренебрежимо мала. Найти ускорения груза a1 и центра массблока a2 в лабораторной системе отсчета.РешениеI. Выберем лабораторную инерциальную систему отсчета, жестко связанную с поT0толком (см. рис. 6.15), ось Y декартовой системы координат которой направим вертикально вниз. В зависимости от соотношения междуT Aмассами тел системы блок может как в полоT m2gжительном, так и в отрицательном направлении оси Y, совершая при этом чисто враща- Ym1gтельное движение относительно мгновеннойоси вращения.
Поскольку нить, прикрепленнаяРис. 6.15к потолку, нерастяжима, то мгновенная осьвращения блока проходит через точку A соприкосновения блока иэтой нити. При этом мгновенная ось вращения перпендикулярнаплоскости чертежа, а ее выбранное положительное направлениеуказано на рис. 6.15.II. Уравнение движения груза в проекции на ось Y (см.рис.
6.15) имеет вид:m1a1 = m1 g − T ,(6.114)где T – сила натяжения нити, на которой подвешен груз.Уравнение вращательного движения (уравнение моментов)блока запишем относительно мгновенной оси вращения в лабораторной инерциальной системе отсчета:Jβ = m2 gR − T ( R2 − R1 ) .(6.115)Здесь J – момент инерции блока относительно мгновенной оси, β –угловое ускорение блока. В (6.114) учтено, что момент силы натяжения T0 верхней нити, прикрепленной к потолку (рис. 6.15), относительно мгновенной оси вращения равен нулю.Момент инерции блока относительно мгновенной оси выразим через заданный в условии задачи момент инерции J0 относительно его оси в соответствии с теоремой Гюйгенса-Штейнера(6.42):J = J 0 + m2 R12 .(6.116)МЕХАНИКА.
МЕТОДИКА РЕШЕНИЯ ЗАДАЧ216Дополним уравнения (6.114) – (6.116) уравнениями кинематической связи, которые следуют из условия нерастяжимости нитей:a1 = − β ( R2 − R1 ) ,(6.117)a2 = βR1 .(6.118)III. Решая систему уравнений (6.114) – (6.118), получаем выражения для искомых ускорений груза a1 и центра масс блока a2:(m1 (R2 − R1 ) − m2 R1 )g (R − R ) ,a1 =(6.119)212m1 (R2 − R1 ) + m2 R12 + J 0a2 = −(m1 (R2 − R1 ) − m2 R1 )g R .12m1 (R2 − R1 ) + m2 R12 + J 0(6.120)Как видим, ускорения груза и центра блока направлены противоположно при любом соотношении масс груза и блока (см.(6.119) и (6.120)), при этом каждое из тел изначально покоящейсясистемы может как опускаться, так и подниматься в зависимости отсоотношения масс тел системы и радиусов ступеней блока.mR1, то груз будет опускаться с ускорением a1Если 1 >m2 R2 − R1(6.119), а центр блока будет подниматься с ускорениемR1a2 = − a1, модуль которого может быть как больше (приR2 − R1R2 < 2 R1 ), так и меньше ( R2 > 2 R1 ) модуля ускорения груза a1 .При обратном соотношении масс груз будет подниматься, ацентр блока опускаться с тем же соотношением ускорений.Заметим, что в частном случае равенства радиусов ступенейблока R2 = R1 вне зависимости от соотношения масс груза и блокаускорение груза a1 равно нулю, а ускорение центра блока направлено вниз и равно a2 =родного блока J 0 =a2 =2g.3m2 R12g .
Для цилиндрического одноm2 R12 + J 01m2 R12 и ускорение его центра будет равно2Глава 6. Кинематика и динамика абсолютно твердого тела217Задача 6.8На лежащую на горизонтальной поверхности катушку массойm = 100 г и моментом инерции J0 = 400 г⋅см2 относительно ее осинамотана невесомая нерастяжимая нить. Внешний радиус катушкиравен R = 4 см, а внутренний – r = 1 см. К концу нити под угломα = 60° к горизонтальной поверхности приложена сила F = 0.2 Н(см. рис. 6.16).XFRαrmgd NFтр ZYРис.
6.16Найти ускорение центра масс катушки a для случая, когдакатушка движется в горизонтальном направлении без проскальзывания и величину коэффициента трения, при котором такое движение возможно.РешениеI. Выберем лабораторную инерциальную систему отсчета,оси X, Y и Z декартовой системы координат которой направленытак, как показано на рис. 6.16.
Поскольку движение катушки является плоским, то существует мгновенная ось вращения, направленная перпендикулярно параллельным плоскостям, в которых двигаются материальные точки катушки. В отсутствие проскальзываниямгновенная ось вращения проходит через точки соприкосновениякатушки с горизонтальной поверхностью. Зададим в качестве положительного направления оси вращения положительное направление оси Z выбранной системы координат, начало отсчета которой совпадает с одной из точек соприкосновения (рис.
6.16).II. Запишем систему уравнений движения катушки вместе снамотанной на нее невесомой нитью относительно лабораторной218МЕХАНИКА. МЕТОДИКА РЕШЕНИЯ ЗАДАЧинерциальной системы отсчета, в которую войдут уравнение вращательного движения вокруг мгновенной оси вращения и уравнение движения центра масс катушки в проекциях на оси X и Y выбранной системы координат:dωJ= Fd ,(6.121)dt0 = N − mg + F sin α .(6.122)ma = F cos α − Fтр ,(6.123)Здесь J – момент инерции катушки относительно мгновенной осивращения, ω – угловая скорость вращения катушки, d – кратчайшеерасстояние от мгновенной оси вращения до линии действия силы F(плечо силы F), Fтр – сила трения покоя, действующая на катушкусо стороны горизонтальной поверхности, N – сила нормальной реакции опоры.Уравнения (6.121) – (6.123) дополним уравнением кинематической связи (в силу отсутствия проскальзывания при движениикатушки), теоремой Гюйгенса-Штейнера (6.42) для момента инерции J и очевидным геометрическим соотношением (см.
рис. 6.16):dωa=R,(6.124)dtJ = J 0 + mR 2 .(6.125)dr+=R.(6.126)cos α cos αДля определения коэффициента трения, при котором возможно движение без проскальзывания, в соответствии с закономАмонтона–Кулона (см. п. 2.1.2 в Главе 2) запишем:Fтр ≤ μN .(6.127)III. Решая систему уравнений (6.121) – (6.126) относительноискомого ускорения центра масс катушки a, получаем:FR 2 ⎛r⎞a=cos α − ⎟ .(6.128)2 ⎜R⎠J 0 + mR ⎝Для отсутствия проскальзывания катушки относительно горизонтальной поверхности коэффициент трения должен удовлетворять неравенству:Глава 6. Кинематика и динамика абсолютно твердого тела219FJ cos α + mrR⋅ 0.(6.129)mg − F sin αJ 0 + mR 2Проанализируем полученный результат.
В соответствии с(6.128) направление ускорения a определяется знаком выраженияr⎞⎛⎜ cos α − ⎟ . В том случае, когда точка пересечения линии дейстR⎠⎝вия силы F и оси Y лежит левее начала отсчета системы координат,rкатушка будет двигаться слева направо, поскольку cos α − > 0 . ВRпротивном случае качение будет происходить справа налево.Подставляя численные значения физических величин, заданные в условии задачи, получим для ускорения центра масс катушкии коэффициента трения:a = 0.4 м/с2, μ ≥ 0,075.μ≥Задача 6.9Оси сплошного и тонкостенного цилиндров соединены невесомой штангой. Цилиндры скатываются без проскальзывания понаклонной поверхности клина с углом при основании α (см.рис. 6.17).
Радиусы цилиндров одинаковы и равны R, при этом масса сплошного цилиндра равна m1, а тонкостенного − m2. Найти уголα , при котором цилиндры будут скатываться без проскальзывания.YN2TN1TFтр1Xαm1gРис. 6.17Fтр2m2gМЕХАНИКА. МЕТОДИКА РЕШЕНИЯ ЗАДАЧ220РешениеI. Выберем лабораторную инерциальную систему отсчета,жестко связанную с клином, оси X и Y декартовой системы координат которой изображены на рис. 6.17. На цилиндры в процессеих плоского движения действуют силы тяжести m1 g и m2 g , силытрения Fтр1 и Fтр2 , силы нормальной реакции опоры N1 и N 2 , атакже силы реакции штанги T (см.
рис. 6.17).II. Запишем уравнения движения центров масс цилиндров впроекции на оси X и Y выбранной системы координат:m1a = m1 g sin α − T − Fтр1 ,(6.130)m2 a = m2 g sin α + T − Fтр 2 ,(6.131)0 = N1 − m1 g cos α ,(6.132)0 = N 2 − m2 g cos α ,(6.133)При записи уравнений (6.130) и (6.131) учтено, что силы реакции штанги T, действующие на цилиндры, равны по модулю.
Этолегко доказать, используя уравнение движения невесомой штанги впроекции на ось X и третий закон Ньютона. Ускорения центровмасс a цилиндров также равны, поскольку штангу считаем абсолютно твердым телом.Уравнения моментов для цилиндров относительно осей вращения, проходящих через их центры масс, имеют вид (см. (6.47)):(6.134)J1β = Fтр1R ,J 2 β = Fтр 2 R .(6.135)Здесь J1 и J 2 − моменты инерции сплошного и тонкостенного цилиндров относительно осей, проходящих через их центры масс соответственно; β – угловое ускорение, одинаковое для сплошного итонкостенного цилиндров в силу уравнения кинематической связи,которое следует из условия качения цилиндра без проскальзывания:βR = a .(6.136)Воспользуемся известными выражениями для моментовинерции однородных сплошного (6.44) и тонкостенного цилиндровотносительно осей, проходящих через их центры масс:m R2J1 = 1 ,(6.137)2Глава 6.
Кинематика и динамика абсолютно твердого тела221J 2 = m2 R 2 .(6.138)В соответствии с законом Амонтона–Кулона (см. п. 2.1.2 вГлаве 2) для сил трения покоя, действующих на цилиндры, справедливы неравенства:Fтр1 ≤ μN1 .(6.139)Fтр2 ≤ μN 2 .(6.140)III. Воспользовавшись соотношениями (6.130) − (6.138), выразим силы нормальной реакции наклонной поверхности клина исил трения покоя со стороны этой поверхности на оба цилиндрачерез величины, заданные в условии задачи, и искомый угол приосновании клина α :N1 = m1 g cos α ,(6.141)N 2 = m2 g cos α ,(6.142)m + m2Fтр1 = 1m1 g sin α ,(6.143)3m1 + 4m22(m1 + m2 )m2 g sin α .(6.144)3m1 + 4m2Подставляя выражения (6.141) − (6.144) в неравенства (6.139)и (6.140), получим условия, при которых качение цилиндров происходит без проскальзывания:3m + 4m2,(6.145)tgα ≤ μ 1m1 + m2Fтр2 =3m1 + 4m2.(6.146)2(m1 + m2 )Поскольку правая часть неравенства (6.146) меньше правойчасти неравенства (6.145) при любых значениях коэффициентатрения μ и масс цилиндров m1 и m2, то искомая область значенийугла при основании клина α, при которых цилиндры будут скатываться без проскальзывания, определяется неравенством (6.146).В соответствии с (6.146) область возможных значений угла αоднозначно определяется отношением масс цилиндров при заданном значении коэффициента трения μ:⎛ 3m1 / m2 + 4 ⎞⎟⎟ .α ≤ arctg⎜⎜ μ(6.147)⎝ 2(m1 / m2 + 1) ⎠tgα ≤ μМЕХАНИКА.
МЕТОДИКА РЕШЕНИЯ ЗАДАЧ222На рис. 6.18 изображен график зависимости предельной величины tgα пр / μ от отношения массы сплошного цилиндра к массе тонкостенного m1 / m2 .tgα пр / μ2100246810m1 / m2Рис. 6.18Как видим, область значений угла α, при которых цилиндрыбудут скатываться без проскальзывания, ограничена сверху предельным значением α пр , которое равно arctg(2 μ ) при m1 << m2 и⎛3 ⎞асимптотически стремится к значению arctg⎜ μ ⎟ при неограни⎝2 ⎠ченном увеличении отношения масс цилиндров m1 / m2 (рис.