Платонов КВ Диссертация (1195988), страница 9
Текст из файла (страница 9)
Если показатель преломления n1 постоянен по всему поперечному сечению сердцевины, то подразумевают, что показатель преломленияимеет ступенчатый профиль, так как при переходе от стекла оболочки кстеклу сердцевины показатель преломления возрастает скачком и остаетсятам постоянным. На рисунке 5.1 показаны ступенчатый профиль показателя преломления оптического волокна, а также траектория луча света сопределенными углами. Подобный волоконный световод называется волноводом со ступенчатым профилем показателя преломления или ступенчатым волноводом.
Этот тип волоконного световода легко изготовить. Однако в настоящее время он используется довольно нечасто. Для того чтобылучше визуализировать траекторию света в таком световоде, показан нижеследующий рисунок.62Рисунок 5.1. Распространение света в волноводе со ступенчатым профилем показателя преломленияВ данном случае для критического угла a0 полного внутреннего отражения, то есть наименьшего угла к нормали падения, при котором луч света направляется в стекле сердцевины и не преломляется в стекле оболочки,справедливоsin a0 n2 / n1 .(5.1)Все лучи света, образующие угол с осью волоконного световода (90-a0),распространяются в стекле сердцевины.Когда свет входит в торец волокна снаружи (воздух nв = 1), то нужноучитывать закон преломления, так как свет способен зайти в оптическийволновод только в пределах определенного апертурного угла q.
В такомслучае справедливоsin q n12 n22 .(5.2)Приведенный волновод является многомодовым. Импульс света, проходящий в нем, состоит из множества составляющих, проходящих в отдельных модах волновода. Каждая из мод возбуждается на входе волокнапод своим собственным определенным углом ввода и идет по нему в пределах стекла сердцевины по расхожим траекториям движения луча. Каж63дая мода проходит разное расстояние оптического пути и поэтому прибывает на противоположный торец волокна в разное время.
Максимальноевремя прохождения соотносится с низким временем прохождения так же,как соотносятся показатели преломления стекла сердцевины и оболочки, ипоэтому данное определение имеет размер того же порядка, что и нормированная разность показателей преломления, то есть выше 1%.Эту модовую дисперсию можно полностью убрать, если параметрыступенчатого волновода подобрать таким образом, что в нем будет проходить только одна мода, а именно – фундаментальная (основная) мода HE11.Однако основная мода уширяется со временем по мере ее распространения по такому волноводу.
Это явление называется хроматической дисперсией. Так как она является свойством материала, она, как правило, имеет место в любом оптическом волокне. Относительно дисперсии мод, хроматическая дисперсия в диапазоне длин волн от 1200 до 1600 нм мала илиотсутствует.Для описывания размера основной моды, был введен термин диаметрполя моды 2w0. Для создания ступенчатого волновода с малым затуханием,который направляет только основную моду в диапазоне длин волн более1200 нм, диаметр поля моды 2w0 нужно уменьшить до 10 мкм. Такой ступенчатый волновод называется одномодовым оптическим волокном.Нужно замеить, что не только диаметр сердцевины, но и числоваяапертура и входная угловая апертура намного меньше, чем такие же параметры что и у многомодового ступенчатого световода, что делает достаточно трудным введение света в одномодовый световод.Если одномодовые световоды имеют изгибы или соединения, то размердиаметра поля моды является важным фактором, который влияет на особенности затухания.
Так, увеличение диаметра поля моды приводит кослаблению пропускания света в изгибах, но снижает потери в разъемныхи неразъемных соединениях [35].645.2 Оптические волокна с параболическим профилем показателяпреломленияВ многомодовом ступенчатом волноводе моды проходят по оптическим путям неодинаковой длины и поэтому доходят до конца световода вразное время. Данную ненужную модовую дисперсию возможно значительно уменьшить, если показатель преломления стекла сердцевиныуменьшать параболически от максимальной величины n1 у оси световодадо величины показателя преломления n2 на границе с оболочкой.
Такойпрофиль показателя преломления, описываемый по степенному закону, споказателем степени профиля u=2 характеризуется уравнением:rrn 2 ( ) n12 (1 2( ) 2 ) .aa(5.3)Оптическое волокно с этим профилем показателя преломления такженазывается параболическим волоконным световодом.На рисунке 5.2 представлены траектория световых волн различного порядка и профиль показателя преломления градиентного световода.Рисунок 5.2. Распространение света в волноводе с параболическим профилем показателя преломленияЛучи света распространяются по оптическому волноводу по волно- ивинтообразным спиральным траекториям. В отличие от ступенчатого профиля показателя преломления, они проходят уже не зигзагообразно. Из-занепостоянного изменения показателя преломления n(r) в стекле сердцевины лучи непрерывно преломляются, по этой причине их направление хода65изменяется, за счет чего они проходят по волновым направлениям.
Лучи,колеблющиеся около оси волновода, распространяются более длинным путем, чем луч света вдоль оси световода. Из-за уменьшенного показателяпреломления вдали от оси оптического волновода эти лучи проходят соответственно быстрее, благодаря чему большие оптические пути компенсируются меньшим временем распространения. В результате различие временных задержек разных лучей почти полностью пропадает. При точномсоздании параболического профиля показателя преломления разность временных задержек по результатам исследований в параболическом волноводе составляет 0,1 нс при времени распространения света 5 мкс на расстоянии 1 км.Эта небольшая разница временных задержек в параболических волноводах определяется, наряду с дисперсией материала, дисперсией профиля.Она возникает из-за того, что показатели преломления сердцевины и оболочки меняются по мере смены длины волны по-разному, поэтому разность показателей преломления и показатель степени профиля зависят отдлины волны.Отсюда профиль показателя преломления параболического волноводапри u>2 делает допустимым, чтобы все траектории моды имели почтиодинаковую временную задержку лишь в ограниченном диапазоне длинволн [36].Поскольку показатель преломления n1(r) параболического волноводазависит от расстояния r от оси световода, то числовая апертура, играющаяважную роль для ввода света в сердцевину, является функцией r:NA n12 (r ) n22.2(5.4)Для типичного световода с параболическим профилем показателя преломления числовая апертура равнаNA n1 .(5.5)66Максимальная входная угловая апертура qmax у оси световода равнаsin qmax NA .(5.6)5.3 Уравнения МаксвеллаРаспространение оптического поля в волокне описывается уравнениемМаксвелла.
Эти уравнения имеют вид,,(5.7),(5.8),(5.9),(5.10)где Е и Н-векторы электрического и магнитного полей;D и В-векторы электрической и магнитной индукции соответственно.Вектор плотности токаи плотности зарядаобозначены источни-ками электромагнитного поля. Если же свободные заряды отсутствуют,например, как в волоконном световоде,и.Векторы электрической и магнитной индукции D и обнаруживаютсякак ответ среды на электрическое и магнитное поля Е и Н, распространяющиеся в среде, и связаны с ними данными выражениями:гдеи,(5.11),(5.12)- диэлектрическая и магнитная постоянные вакуума;Р и М - электрическая и магнитная поляризации.В случае волоконного световода, являющегося немагнитным веществом,.Уравнения Максвелла используются для получения уравнения, описывающего распространение света в волоконных световодах:1 2Ec2t2 02Pt2,(5.13)67где используется выражение, с-скорость света в вакууме.
Что-бы закончить отображение, нужно обозначить связь между индуцированной поляризацией Р и электрическим полем Е. Вообще говоря, чтобы описать Р, нужно использовать квантовомеханическую теорию. Однако подобный подход часто бывает нужен только тогда, когда частота оптического поля очень близка к резонансным частотам среды. В противоположномже случае, вдали от резонансных частот, для связывания Р и Е возможноиспользовать феноменологическое отношение (4.1), которое справедливо вволноводах в области длин волн 0,5-2 мкм, представляющей интерес дляисследования нелинейно-оптических эффектов. Изучим нелинейные эффекты только третьего порядка, определяемыеИндуцированная поля-ризация состоит из двух частей,где-линейная и(5.14)-нелинейная части, связанные с электрическим по-лем в самом общем случае соотношениями∫(5.15)PNL (r , t ) 0 (3) (t t1, t t2 , t t3 ) E (r , t1 ) E (r , t2 ) E (r , t3 )dt1dt2dt3(5.16)Эти выражения истинны в дипольном приближении, когда обозначается, что отклик среды является локальным.Уравнения (5.13) — (5.16) составляют общую форму описания нелинейных эффектов низшего порядка в волоконных световодах.
Ввиду ихсложности нужно сделать пару упрощающих приближений. Максимальнообщее упрощение является тем, что нелинейная поляризацияв (5.14)считается малым возмущением полной индуцированной поляризации.Данное допущение оправданно, так как в волоконных волноводах || | Поэтому сначала будет решение уравнения (5.13) при|. Так как68уравнение (5.13) линейно по Е, оно имеет упрощенную форму в спектральном представлении: ( )где- фурье-компоненты2,с2, определяемые как∫а(5.17),(5.18)-диэлектрическая проницаемость, которая зависит от частоты поприведенному ниже выражению:,здесь(5.19)фурье-преобразование функцииследовательно, и.












