МУ по подготовке к теоретическому экзамену по курсу УМФ (1188233), страница 3
Текст из файла (страница 3)
u| = cos θ;18.8. |u| → 0, u|r=R = cos θ;r=Rr→∞½∆u = 0, r < R,18.9. u| = cos2 θ;r=R½∆u = 0, r > R,18.10. |u| → 0, u|r=R = cos2 θ; ) ¢ãâਠè à r→∞16(18.11.(18.12.18.13.18.14.½∆u = 0, r <³ R,´u|r=R = sin ϕ + π4 sin θ;∆u = 0, r > R,³´|u| → 0, u|r=R = sin ϕ + π4 sin θ;r→∞∆u = 0, r < 1,(u + ur )|r=1 = sin θ cos ϕ + sin2 θ;½∆u = 0, r > 1,|u| → 0, (u − 2ur )|r=R = 1 + sin ϕ sin θ.r→∞19. à¨ æ¨®ë¥ § ¤ ç¨.19.1. ¨ää¥à¥æ¨ «ìë© ®¯¥à â®à L ¨¬¥¥â ¢¨¤Lu = −ddxµ¶dup(x)+ ε(x)u,dxp(x) ∈ C 2 (a; b);a < x < b,(1)ε(x) ∈ C(a, b), p(x) > 0. âì ®¯à¥¤¥«¥¨¥ ª¢ ¤à â¨ç®© ä®à¬ë ®¯¥à â®à L.19.2. 믨á âì ª¢ ¤à â¨çãî ä®à¬ã ®¯¥à â®à L, ¥á«¨: ) Lu = −u00 , 0 < x < 1, u ∈ C̊ 1 [0; 1];d (ex · u0 (x)), −1 < x < 1, u ∈ C̊ 1 [−1; 1];¡) Lu = − dxd (x2 u0 (x)) − u(x), 1 < x < 2, u ∈ C̊ 1 [1; 2];¢) Lu = − dxd ((1+x2 )u0 (x))+sin u(x), −1 < x < 1, u ∈ C̊ 2 [−1; 1].£) Lu = − dx19.3.
ãáâì äãªæ¨ï u(x) ∈ C̊1 (a; b] ¥áâì ¬¨¨¬ã¬ äãªæ¨® « ZJ(u) =b(p(x)u02 (x) + ε(x) · u) dx,ap(x) ∈ C 1 (a, b),ε(x) ∈ C(a, b),p(x) > 0.®áâ ¢¨âì § ¤ çã, à¥è¥¨¥¬ ª®â®à®© ï¥âáï äãªæ¨ï u(x).19.4. ©â¨ inf J(u), ¥á«¨: )¡)¢)u∈DR1J(u) = 0 u02 (x) dx, D = {u(x) ∈ C̊ 1 [0; 1], kuk = 1};RπJ(u) = 0 u02 (x) dx, D = {u(x) ∈ C̊ 1 [0; π], kuk = 1};RπJ(u) = 0 u02 (x) dx, D = {u(x) ∈ C 1 [0; π], u0 (0) = u0 (π) = 0};17£) J(u)= 0}.=R10u02 (x) dx, D = {u(x) ∈ C 1 [0; 1], u(0) = 0, u0 (1) =19.5. ãáâì äãªæ¨ï u0 (x) ∈ D ॠ«¨§ã¥â ¬¨¨¬ã¬ äãªæ¨®- « J(u). ©â¨ u0 (x), ¥á«¨: R ) D = {u(x) ∈ C̊ 1 [0; 1]}, J(u) = R01 (u02 + 2u) dx;¡) D = {u(x) ∈ C̊1 [0, π]}, J(u) = 0π (u02 − 2u sin x) dx; R¢) D = {u(x) ∈ C 1 (0, π), u(0) = 0 = u0 (π)}, J(u) = 0π (u02 −− 2u cos x) dx;R£) D = {u(x) ∈ C 1 (0, 1), u(0) = 0 = u0 (1)}, J(u) = 01 (u02 ++ 2xu) dx.19.6.
ãáâì äãªæ¨ï u0 (x) ∈ D ॠ«¨§ã¥â ¬¨¨¬ã¬ äãªæ¨® « ZJ(u) = (|∇u|2 + 2f (x)u) dx, £¤¥ x = (x1 , x2 , x3 ),ΩΩ | ®£à ¨ç¥ ï ®¡« áâì ¢ R3 , D = {u(x) ∈ C 1 (Ω), u|∂Ω = ϕ},f (x) ∈ C(Ω). ®áâ ¢¨âì ªà ¥¢ãî § ¤ çã, à¥è¥¨¥¬ ª®â®à®©ï¢«ï¥âáï u0 (x).19.7. ãáâì äãªæ¨ï u0 (x) ∈ D ॠ«¨§ã¥â ¬¨¨¬ã¬ äãªæ¨® « J(u), x = (x1 , x2 ). ©â¨ u0 (x), ¥á«¨:R ) D = {u(x) ∈ C 1 (|x| 6 1), u||x|=1 = x1 , J(u) = |x|<1 u02 dx;R¡) D = {u(x) ∈ C 1 (|x| 6 1), u||x|=1 = x21 }, J(u) = |x|<1 (u02 ++ 2u) dx;R¢) D = {u(x) ∈ C 1 (|x| 6 2), u||x|=2 = x1 +x2 , J(u) = |x|<2 u02 dx;R£) D = {u(x) ∈ C 1 (|x| 6 2), u||x|=2 = 0}, J(u) = |x|<2 (u02 +p+ 2 x21 + x22 u) dx.19.8.
©â¨ u∈Dinf J(u), ¥á«¨R π 02R ) J(u) =R 0 u dx, D = {u(x) ∈ C̊ 1 (0, π], kuk2 = 0π u2 (x) dx =π= 1, ¨ 0R u(x) sin(kx) dx = 0, k = 1, 2, . . . , };¡) J(u) = 0π (u02 + u2R)dx, D = {u(x) ∈ C 1 (0, π), kuk2 = 1,πu0 (0) = u0 (π) = 1 ¨ 0 u(x) cos kx dx = 0, k = 1, 2, . . . , }.20. ¤ ç¨ ®¡®¡éñë¥ äãªæ¨¨.20.1. ãáâì x ∈ Rn . âì ®¯à¥¤¥«¥¨¥ ¯à®áâà á⢠®á®¢ëåäãªæ¨© D, ¯à®áâà á⢠®¡®¡éñëå äãªæ¨© D0 , § ¤ ëå18 D, â ª¦¥ ¯à®áâà á⢠®á®¢ëå ¨ ®¡®¡éñëå äãªæ¨©¬¥¤«¥®£® à®áâ L(Rn ) ¨ L0 (Rn ).20.2.
âì ®¯à¥¤¥«¥¨ï á室¨¬®á⨠¯®á«¥¤®¢ ⥫ì®á⨠®¡®¡éñëå äãªæ¨© {fk (x)}, fk (x) ∈ D0 ; ॣã«ïன ¨ ᨣã«ïன ®¡®¡éñ®© äãªæ¨¨.20.3. âì ®¯à¥¤¥«¥¨¥ ¯à®¨§¢®¤®© ®¡®¡éñ®© äãªæ¨¨f (x) ∈ D0 , â ª¦¥ ®¯à¥¤¥«¥¨¥ ¯à®¨§¢®¤®© «î¡®£® ¯®à浪 m, m > 1: f (m) (x).20.4{20.13: ëç¨á«¨âì ¯à®¨§¢®¤ë¥ ¯®à浪 m ®¡®¡éñëåäãªæ¨© f (x) ∈ D0 (R1 ): (θ(x) | äãªæ¨ï ¥¢¨á ©¤ ).20.4. f (x) = θ(x) sin x, m = 1; 20.5. f (x) = θ(x) cos x, m = 1;20.6. f (x) = x2 θ(x), m = 1, 2;20.7.
f (x) = (1 − cos x)θ(x), m = 1, 2, 3;20.8. f (x) = sign x, m = 1, 2;20.9. f (x) = x sign x, m = 1, 2, 3, . . . ;20.10. f (x) = xθ(x − 1), m = 1;20.11. f (x) = θ(1 − |x|), m = 1, 2, . . . ;20.12. f (x) = xθ(x), m = 1, 2, . . . ;20.13. f (x) = (1 − cos x)2 δ(x), m = 1, 2, . . .20.14. âì ®¯à¥¤¥«¥¨¥ ¯à¥®¡à §®¢ ¨ï ãàì¥ ®¡®¡éñ®©äãªæ¨¨ ¬¥¤«¥®£® à®áâ ¨ ®¡à ⮣® ¯à¥®¡à §®¢ ¨ï ãàì¥.20.15{20.20: ©â¨ ¯à¥®¡à §®¢ ¨¥ ãàì¥ á«¥¤ãîé¨å ®¡®¡éñëå äãªæ¨© f (x) ∈ D0 (R1 ):20.15. f (x) = δ(x);20.16. f (x) = δ(x − x0 );20.17. f (x) = x3 ;20.18. f (x) = θ(1 − |x|);20.19. f (x) = 1;20.20. f (x) = cos x.20.21. âì ®¯à¥¤¥«¥¨¥ ®¡®¡éñ®£® à¥è¥¨ï «¨¥©®£® ¤¨ää¥à¥æ¨ «ì®£® ãà ¢¥¨ï Lu = f (x), â ª¦¥ ä㤠¬¥â «ì®£® à¥è¥¨ï ¤¨ää¥à¥æ¨ «ì®£® ®¯¥à â®à L: Lu =mP=ak u(k) (x).k=020.22.
ä®à¬ã«¨à®¢ âì ¯®áâ ®¢ªã ®¡®¡éñ®© § ¤ ç¨ ®è¨¤«ï ¢®«®¢®£® ãà ¢¥¨ï á ¨áâ®ç¨ª®¬ f (x, t) ∈ D0 (R2 ), ¤ â쮯।¥«¥¨ï ¥ñ ä㤠¬¥â «ì®£® à¥è¥¨ï ε(x, t) ¢ë¯¨á âìä®à¬ã«ã ¤«ï ε(x, t) ¨ ä®à¬ã«ã ¤«ï à¥è¥¨ï ®¡®¡éñ®© § ¤ ç¨ ®è¨.1920.23. ä®à¬ã«¨à®¢ âì ¯®áâ ®¢ªã ®¡®¡éñ®© § ¤ ç¨ ®è¨¤«ï ãà ¢¥¨ï ⥯«®¯à®¢®¤®áâ¨ á ¨áâ®ç¨ª®¬ f (x, t) ∈∈ D0 (Rn+1 ), ¢ë¯¨á âì ¥ñ ä㤠¬¥â «ì®¥ à¥è¥¨¥ ε(x, t) ¨ä®à¬ã«ã ¤«ï à¥è¥¨ï ®¡®¡éñ®© § ¤ ç¨ ®è¨.20.